
Nginx, Inc.

NGINX Plus Reference Guide
NGINX Plus - release 33, based on 1.27.2 core

November 7, 2024

https://nginx.com

Copyright Notice

© 2020-2024 F5, Inc. All rights reserved. © 2012-2019 Nginx, Inc. All rights
reserved. NGINX, NGINX Plus and any Nginx, Inc. product or service name or
logo used herein are trademarks of F5, Inc. All other trademarks used herein belong
to their respective owners. The trademarks and logos displayed herein may not be
used without the prior written consent of Nginx, Inc. or their respective owners.

This documentation is provided “AS IS” and is subject to change without notice
and should not be interpreted as a commitment by F5, Inc. This documentation may
not be copied, modified or distributed without authorization of F5, Inc. and may
be used only in connection with F5, Inc. products and services. F5, Inc. assumes
no responsibility or liability for any errors or inaccuracies that may appear in this
documentation.

1

Preface

About NGINX

NGINX® (“engine x”) is a high performance, high concurrency web server
excelling at large scale content delivery, web acceleration and protecting
application containers. Its precise integration with modern operating systems
allows unprecedented levels of efficiency even when running on commodity
hardware.

F5, Inc. develops and maintains NGINX open source distribution, and
offers commercial support and professional services for NGINX.

About NGINX Plus

• Offers additional features on top of the free open source NGINX version.

• Prepared, tested and supported by NGINX core engineering team.

For more information

• Find more details about NGINX products and support at
https://www.f5.com/products/nginx/.

• For online NGINX documentation visit https://nginx.org/en/docs.

• NGINX and NGINX Plus Tutorial and Admin Guide is available here:
https://docs.nginx.com/nginx/admin-guide/.

• For general inquiries, please use: nginx-inquiries@nginx.com

2

https://www.f5.com/products/nginx/
https://nginx.org/en/docs
https://docs.nginx.com/nginx/admin-guide/
mailto:nginx-inquiries@nginx.com

Contents

Title 1

Preface 2

Table of Contents 3

1 Core modules 6
1.1 Core functionality . 6
1.2 Setting up hashes . 16
1.3 Connection processing methods 17
1.4 Logging to syslog . 18

2 HTTP server modules 19
2.1 Module ngx http core module 19
2.2 Module ngx http access module 59
2.3 Module ngx http addition module 61
2.4 Module ngx http api module 63
2.5 Module ngx http auth basic module 118
2.6 Module ngx http auth jwt module 120
2.7 Module ngx http auth request module 125
2.8 Module ngx http autoindex module 127
2.9 Module ngx http browser module 129
2.10 Module ngx http charset module 131
2.11 Module ngx http dav module 134
2.12 Module ngx http empty gif module 137
2.13 Module ngx http f4f module . 138
2.14 Module ngx http fastcgi module 139
2.15 Module ngx http flv module . 160
2.16 Module ngx http geo module 161
2.17 Module ngx http geoip module 164
2.18 Module ngx http grpc module 167
2.19 Module ngx http gunzip module 176
2.20 Module ngx http gzip module 177
2.21 Module ngx http gzip static module 181
2.22 Module ngx http headers module 182
2.23 Module ngx http hls module . 185
2.24 Module ngx http image filter module 189

3

CONTENTS CONTENTS

2.25 Module ngx http index module 193
2.26 Module ngx http int ... module 194
2.27 Module ngx http js module . 196
2.28 Module ngx http keyval module 206
2.29 Module ngx http limit conn module 208
2.30 Module ngx http limit req module 212
2.31 Module ngx http log module . 216
2.32 Module ngx http map module 220
2.33 Module ngx http memcached module 223
2.34 Module ngx http mirror module 228
2.35 Module ngx http mp4 module 230
2.36 Module ngx http perl module 233
2.37 Module ngx http proxy module 239
2.38 Module ngx http pro ... module 268
2.39 Module ngx http random index module 269
2.40 Module ngx http realip module 270
2.41 Module ngx http referer module 272
2.42 Module ngx http rewrite module 274
2.43 Module ngx http scgi module 280
2.44 Module ngx http secure link module 298
2.45 Module ngx http session log module 301
2.46 Module ngx http slice module 303
2.47 Module ngx http split clients module 305
2.48 Module ngx http ssi module . 306
2.49 Module ngx http ssl module . 312
2.50 Module ngx http status module 327
2.51 Module ngx http stub status module 337
2.52 Module ngx http sub module 339
2.53 Module ngx http upstream module 341
2.54 Module ngx http upstream conf module 358
2.55 Module ngx http upstream hc module 362
2.56 Module ngx http userid module 367
2.57 Module ngx http uwsgi module 371
2.58 Module ngx http v2 module . 393
2.59 Module ngx http v3 module . 398
2.60 Module ngx http xslt module 402

3 Stream server modules 405
3.1 Module ngx stream core module 405
3.2 Module ngx stream access module 416
3.3 Module ngx stream geo module 417
3.4 Module ngx stream geoip module 419
3.5 Module ngx stream js module 422
3.6 Module ngx stream keyval module 432
3.7 Module ngx stream limit conn module 434
3.8 Module ngx stream log module 437

Nginx, Inc. p.4 of 563

CONTENTS CONTENTS

3.9 Module ngx stream map module 440
3.10 Module ngx stream mqtt filter module 443
3.11 Module ngx stream mqtt preread module 445
3.12 Module ngx stream pass module 446
3.13 Module ngx stream proxy module 448
3.14 Module ngx stream p ... module 457
3.15 Module ngx stream realip module 458
3.16 Module ngx stream return module 459
3.17 Module ngx stream set module 460
3.18 Module ngx stream split clients module 461
3.19 Module ngx stream ssl module 462
3.20 Module ngx stream ssl preread module 475
3.21 Module ngx stream upstream module 477
3.22 Module ngx stream upstream hc module 485
3.23 Module ngx stream zone sync module 489

4 Mail server modules 497
4.1 Module ngx mail core module 497
4.2 Module ngx mail auth http module 503
4.3 Module ngx mail proxy module 507
4.4 Module ngx mail realip module 509
4.5 Module ngx mail ssl module . 510
4.6 Module ngx mail imap module 519
4.7 Module ngx mail pop3 module 521
4.8 Module ngx mail smtp module 522

5 Miscellaneous 524
5.1 Command-line parameters . 524
5.2 Module ngx mgmt module . 526
5.3 Module ngx otel module . 530

A Changelog for NGINX Plus 534

B Legal Notices 551

Index 556

Nginx, Inc. p.5 of 563

Chapter 1

Core modules

1.1 Core functionality

1.1.1 Example Configuration 7
1.1.2 Directives . 7

accept mutex . 7
accept mutex delay . 7
daemon . 7
debug connection . 8
debug points . 8
env . 8
error log . 9
events . 10
include . 10
load module . 10
lock file . 10
master process . 11
multi accept . 11
pcre jit . 11
pid . 11
ssl engine . 11
thread pool . 12
timer resolution . 12
use . 12
user . 13
worker aio requests . 13
worker connections . 13
worker cpu affinity . 13
worker priority . 14
worker processes . 14
worker rlimit core . 15
worker rlimit nofile . 15
worker shutdown timeout 15
working directory . 15

6

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

1.1.1 Example Configuration

user www www;
worker_processes 2;

error_log /var/log/nginx-error.log info;

events {
use kqueue;
worker_connections 2048;

}

...

1.1.2 Directives

accept mutex

Syntax: accept_mutex on | off;

Default off

Context: events

If accept_mutex is enabled, worker processes will accept new connections
by turn. Otherwise, all worker processes will be notified about new
connections, and if volume of new connections is low, some of the worker
processes may just waste system resources.

There is no need to enable accept_mutex on systems that support the
EPOLLEXCLUSIVE flag (1.11.3) or when using reuseport.

Prior to version 1.11.3, the default value was on.

accept mutex delay

Syntax: accept_mutex_delay time;

Default 500ms

Context: events

If accept mutex is enabled, specifies the maximum time during which a
worker process will try to restart accepting new connections if another worker
process is currently accepting new connections.

daemon

Syntax: daemon on | off;

Default on

Context: main

Determines whether nginx should become a daemon. Mainly used during
development.

Nginx, Inc. p.7 of 563

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

debug connection

Syntax: debug_connection address | CIDR | unix:;

Default —

Context: events

Enables debugging log for selected client connections. Other connections
will use logging level set by the error log directive. Debugged connections
are specified by IPv4 or IPv6 (1.3.0, 1.2.1) address or network. A connection
may also be specified using a hostname. For connections using UNIX-domain
sockets (1.3.0, 1.2.1), debugging log is enabled by the “unix:” parameter.

events {
debug_connection 127.0.0.1;
debug_connection localhost;
debug_connection 192.0.2.0/24;
debug_connection ::1;
debug_connection 2001:0db8::/32;
debug_connection unix:;
...

}

For this directive to work, nginx needs to be built with --with-debug,
see “A debugging log”.

debug points

Syntax: debug_points abort | stop;

Default —

Context: main

This directive is used for debugging.
When internal error is detected, e.g. the leak of sockets on restart of

working processes, enabling debug_points leads to a core file creation
(abort) or to stopping of a process (stop) for further analysis using a system
debugger.

env

Syntax: env variable[=value];

Default TZ

Context: main

By default, nginx removes all environment variables inherited from its
parent process except the TZ variable. This directive allows preserving some
of the inherited variables, changing their values, or creating new environment
variables. These variables are then:

• inherited during a live upgrade of an executable file;

• used by the ngx http perl module module;

Nginx, Inc. p.8 of 563

https://nginx.org/en/docs/debugging_log.html
https://nginx.org/en/docs/control.html#upgrade

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

• used by worker processes. One should bear in mind that controlling
system libraries in this way is not always possible as it is common for
libraries to check variables only during initialization, well before they can
be set using this directive. An exception from this is an above mentioned
live upgrade of an executable file.

The TZ variable is always inherited and available to the ngx http perl -
module module, unless it is configured explicitly.

Usage example:

env MALLOC_OPTIONS;
env PERL5LIB=/data/site/modules;
env OPENSSL_ALLOW_PROXY_CERTS=1;

The NGINX environment variable is used internally by nginx and should
not be set directly by the user.

error log

Syntax: error_log file [level];

Default logs/error.log error

Context: main, http, mail, stream, server, location

Configures logging. Several logs can be specified on the same configuration
level (1.5.2). If on the main configuration level writing a log to a file is not
explicitly defined, the default file will be used.

The first parameter defines a file that will store the log.
The special value stderr selects the standard error file. Logging to syslog

can be configured by specifying the “syslog:” prefix. Logging to a cyclic
memory buffer can be configured by specifying the “memory:” prefix and
buffer size, and is generally used for debugging (1.7.11).

The second parameter determines the level of logging, and can be one of the
following: debug, info, notice, warn, error, crit, alert, or emerg.
Log levels above are listed in the order of increasing severity. Setting a certain
log level will cause all messages of the specified and more severe log levels to
be logged. For example, the default level error will cause error, crit,
alert, and emerg messages to be logged. If this parameter is omitted then
error is used.

For debug logging to work, nginx needs to be built with --with-debug,
see “A debugging log”.

The directive can be specified on the stream level starting from version
1.7.11, and on the mail level starting from version 1.9.0.

Nginx, Inc. p.9 of 563

https://nginx.org/en/docs/control.html#upgrade
https://nginx.org/en/docs/debugging_log.html#memory
https://nginx.org/en/docs/debugging_log.html#memory
https://nginx.org/en/docs/debugging_log.html

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

events

Syntax: events { . . . }
Default —

Context: main

Provides the configuration file context in which the directives that affect
connection processing are specified.

include

Syntax: include file | mask;

Default —

Context: any

Includes another file, or files matching the specified mask, into
configuration. Included files should consist of syntactically correct directives
and blocks.

Usage example:

include mime.types;
include vhosts/*.conf;

load module

Syntax: load_module file;

Default —

Context: main
This directive appeared in version 1.9.11.

Loads a dynamic module.
Example:

load_module modules/ngx_mail_module.so;

lock file

Syntax: lock_file file;

Default logs/nginx.lock

Context: main

nginx uses the locking mechanism to implement accept mutex and serialize
access to shared memory. On most systems the locks are implemented using
atomic operations, and this directive is ignored. On other systems the “lock
file” mechanism is used. This directive specifies a prefix for the names of lock
files.

Nginx, Inc. p.10 of 563

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

master process

Syntax: master_process on | off;

Default on

Context: main

Determines whether worker processes are started. This directive is intended
for nginx developers.

multi accept

Syntax: multi_accept on | off;

Default off

Context: events

If multi_accept is disabled, a worker process will accept one new
connection at a time. Otherwise, a worker process will accept all new
connections at a time.

The directive is ignored if kqueue connection processing method is used,
because it reports the number of new connections waiting to be accepted.

pcre jit

Syntax: pcre_jit on | off;

Default off

Context: main
This directive appeared in version 1.1.12.

Enables or disables the use of “just-in-time compilation” (PCRE JIT) for
the regular expressions known by the time of configuration parsing.

PCRE JIT can speed up processing of regular expressions significantly.

The JIT is available in PCRE libraries starting from version 8.20 built
with the --enable-jit configuration parameter. When the PCRE library
is built with nginx (--with-pcre=), the JIT support is enabled via the
--with-pcre-jit configuration parameter.

pid

Syntax: pid file;

Default logs/nginx.pid

Context: main

Defines a file that will store the process ID of the main process.

ssl engine

Syntax: ssl_engine device;

Default —

Context: main

Nginx, Inc. p.11 of 563

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

Defines the name of the hardware SSL accelerator.

thread pool

Syntax: thread_pool name threads=number [max_queue=number];

Default default threads=32 max_queue=65536

Context: main
This directive appeared in version 1.7.11.

Defines the name and parameters of a thread pool used for multi-threaded
reading and sending of files without blocking worker processes.

The threads parameter defines the number of threads in the pool.
In the event that all threads in the pool are busy, a new task will wait in

the queue. The max_queue parameter limits the number of tasks allowed to
be waiting in the queue. By default, up to 65536 tasks can wait in the queue.
When the queue overflows, the task is completed with an error.

timer resolution

Syntax: timer_resolution interval;

Default —

Context: main

Reduces timer resolution in worker processes, thus reducing the number
of gettimeofday system calls made. By default, gettimeofday is called
each time a kernel event is received. With reduced resolution, gettimeofday
is only called once per specified interval.

Example:

timer_resolution 100ms;

Internal implementation of the interval depends on the method used:

• the EVFILT_TIMER filter if kqueue is used;

• timer_create if eventport is used;

• setitimer otherwise.

use

Syntax: use method;

Default —

Context: events

Specifies the connection processing method to use. There is normally no
need to specify it explicitly, because nginx will by default use the most efficient
method.

Nginx, Inc. p.12 of 563

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

user

Syntax: user user [group];

Default nobody nobody

Context: main

Defines user and group credentials used by worker processes. If group is
omitted, a group whose name equals that of user is used.

worker aio requests

Syntax: worker_aio_requests number;

Default 32

Context: events
This directive appeared in versions 1.1.4 and 1.0.7.

When using aio with the epoll connection processing method, sets the
maximum number of outstanding asynchronous I/O operations for a single
worker process.

worker connections

Syntax: worker_connections number;

Default 512

Context: events

Sets the maximum number of simultaneous connections that can be opened
by a worker process.

It should be kept in mind that this number includes all connections (e.g.
connections with proxied servers, among others), not only connections with
clients. Another consideration is that the actual number of simultaneous
connections cannot exceed the current limit on the maximum number of open
files, which can be changed by worker rlimit nofile.

worker cpu affinity

Syntax: worker_cpu_affinity cpumask . . . ;

Syntax: worker_cpu_affinity auto [cpumask];

Default —

Context: main

Binds worker processes to the sets of CPUs. Each CPU set is represented
by a bitmask of allowed CPUs. There should be a separate set defined for each
of the worker processes. By default, worker processes are not bound to any
specific CPUs.

For example,

worker_processes 4;
worker_cpu_affinity 0001 0010 0100 1000;

binds each worker process to a separate CPU, while

Nginx, Inc. p.13 of 563

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

worker_processes 2;
worker_cpu_affinity 0101 1010;

binds the first worker process to CPU0/CPU2, and the second worker
process to CPU1/CPU3. The second example is suitable for hyper-threading.

The special value auto (1.9.10) allows binding worker processes
automatically to available CPUs:

worker_processes auto;
worker_cpu_affinity auto;

The optional mask parameter can be used to limit the CPUs available for
automatic binding:

worker_cpu_affinity auto 01010101;

The directive is only available on FreeBSD and Linux.

worker priority

Syntax: worker_priority number;

Default 0

Context: main

Defines the scheduling priority for worker processes like it is done by the
nice command: a negative number means higher priority. Allowed range
normally varies from -20 to 20.

Example:

worker_priority -10;

worker processes

Syntax: worker_processes number | auto;

Default 1

Context: main

Defines the number of worker processes.
The optimal value depends on many factors including (but not limited to)

the number of CPU cores, the number of hard disk drives that store data, and
load pattern. When one is in doubt, setting it to the number of available CPU
cores would be a good start (the value “auto” will try to autodetect it).

The auto parameter is supported starting from versions 1.3.8 and 1.2.5.

Nginx, Inc. p.14 of 563

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

worker rlimit core

Syntax: worker_rlimit_core size;

Default —

Context: main

Changes the limit on the largest size of a core file (RLIMIT_CORE) for
worker processes. Used to increase the limit without restarting the main
process.

worker rlimit nofile

Syntax: worker_rlimit_nofile number;

Default —

Context: main

Changes the limit on the maximum number of open files
(RLIMIT_NOFILE) for worker processes. Used to increase the limit
without restarting the main process.

worker shutdown timeout

Syntax: worker_shutdown_timeout time;

Default —

Context: main
This directive appeared in version 1.11.11.

Configures a timeout for a graceful shutdown of worker processes. When
the time expires, nginx will try to close all the connections currently open to
facilitate shutdown.

working directory

Syntax: working_directory directory;

Default —

Context: main

Defines the current working directory for a worker process. It is primarily
used when writing a core-file, in which case a worker process should have write
permission for the specified directory.

Nginx, Inc. p.15 of 563

CHAPTER 1. CORE MODULES 1.2. SETTING UP HASHES

1.2 Setting up hashes

1.2.1 Overview . 16

1.2.1 Overview

To quickly process static sets of data such as server names, map directive’s
values, MIME types, names of request header strings, nginx uses hash tables.
During the start and each re-configuration nginx selects the minimum possible
sizes of hash tables such that the bucket size that stores keys with identical
hash values does not exceed the configured parameter (hash bucket size). The
size of a table is expressed in buckets. The adjustment is continued until
the table size exceeds the hash max size parameter. Most hashes have the
corresponding directives that allow changing these parameters, for example,
for the server names hash they are server names hash max size and server -
names hash bucket size.

The hash bucket size parameter is aligned to the size that is a multiple of
the processor’s cache line size. This speeds up key search in a hash on modern
processors by reducing the number of memory accesses. If hash bucket size is
equal to one processor’s cache line size then the number of memory accesses
during the key search will be two in the worst case — first to compute the
bucket address, and second during the key search inside the bucket. Therefore,
if nginx emits the message requesting to increase either hash max size or hash
bucket size then the first parameter should first be increased.

Nginx, Inc. p.16 of 563

CHAPTER 1. CORE MODULES 1.3. CONNECTION PROCESSING METHODS

1.3 Connection processing methods

1.3.1 Overview . 17

1.3.1 Overview

nginx supports a variety of connection processing methods. The availability
of a particular method depends on the platform used. On platforms that
support several methods nginx will normally select the most efficient method
automatically. However, if needed, a connection processing method can be
selected explicitly with the use directive.

The following connection processing methods are supported:

• select — standard method. The supporting module is built au-
tomatically on platforms that lack more efficient methods. The
--with-select_module and --without-select_module con-
figuration parameters can be used to forcibly enable or disable the build
of this module.

• poll — standard method. The supporting module is built au-
tomatically on platforms that lack more efficient methods. The
--with-poll_module and --without-poll_module configura-
tion parameters can be used to forcibly enable or disable the build of
this module.

• kqueue — efficient method used on FreeBSD 4.1+, OpenBSD 2.9+,
NetBSD 2.0, and macOS.

• epoll — efficient method used on Linux 2.6+.

The EPOLLRDHUP (Linux 2.6.17, glibc 2.8) and EPOLLEXCLUSIVE
(Linux 4.5, glibc 2.24) flags are supported since 1.11.3.

Some older distributions like SuSE 8.2 provide patches that add epoll
support to 2.4 kernels.

• /dev/poll — efficient method used on Solaris 7 11/99+, HP/UX
11.22+ (eventport), IRIX 6.5.15+, and Tru64 UNIX 5.1A+.

• eventport — event ports, method used on Solaris 10+ (due to known
issues, it is recommended using the /dev/poll method instead).

Nginx, Inc. p.17 of 563

CHAPTER 1. CORE MODULES 1.4. LOGGING TO SYSLOG

1.4 Logging to syslog

1.4.1 Overview . 18

1.4.1 Overview

The error log and access log directives support logging to syslog. The
following parameters configure logging to syslog:

server=address
Defines the address of a syslog server. The address can be specified as a
domain name or IP address, with an optional port, or as a UNIX-domain
socket path specified after the“unix:”prefix. If port is not specified, the
UDP port 514 is used. If a domain name resolves to several IP addresses,
the first resolved address is used.

facility=string
Sets facility of syslog messages, as defined in RFC 3164. Facility can
be one of “kern”, “user”, “mail”, “daemon”, “auth”, “intern”,
“lpr”,“news”,“uucp”,“clock”,“authpriv”,“ftp”,“ntp”,“audit”,
“alert”, “cron”, “local0”..“local7”. Default is “local7”.

severity=string
Sets severity of syslog messages for access log, as defined in RFC 3164.
Possible values are the same as for the second parameter (level) of the
error log directive. Default is “info”.

Severity of error messages is determined by nginx, thus the parameter
is ignored in the error_log directive.

tag=string
Sets the tag of syslog messages. Default is “nginx”.

nohostname
Disables adding the “hostname” field into the syslog message header
(1.9.7).

Example syslog configuration:

error_log syslog:server=192.168.1.1 debug;

access_log syslog:server=unix:/var/log/nginx.sock,nohostname;
access_log syslog:server=[2001:db8::1]:12345,facility=local7,tag=nginx,severity

=info combined;

Logging to syslog is available since version 1.7.1. As part of our
commercial subscription logging to syslog is available since version 1.5.3.

Nginx, Inc. p.18 of 563

https://datatracker.ietf.org/doc/html/rfc3164#section-4.1.1
https://datatracker.ietf.org/doc/html/rfc3164#section-4.1.1
https://nginx.com/products/

Chapter 2

HTTP server modules

2.1 Module ngx http core module

2.1.1 Directives . 21
absolute redirect . 21
aio . 21
aio write . 22
alias . 22
auth delay . 23
chunked transfer encoding 23
client body buffer size 24
client body in file only 24
client body in single buffer 24
client body temp path 24
client body timeout . 25
client header buffer size 25
client header timeout . 25
client max body size . 25
connection pool size . 26
default type . 26
directio . 26
directio alignment . 26
disable symlinks . 27
error page . 28
etag . 29
http . 29
if modified since . 29
ignore invalid headers 29
internal . 30
keepalive disable . 30
keepalive requests . 31
keepalive time . 31
keepalive timeout . 31
large client header buffers 32

19

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

limit except . 32
limit rate . 32
limit rate after . 33
lingering close . 33
lingering time . 34
lingering timeout . 34
listen . 35
location . 38
log not found . 39
log subrequest . 40
max ranges . 40
merge slashes . 40
msie padding . 41
msie refresh . 41
open file cache . 41
open file cache errors . 42
open file cache min uses 42
open file cache valid . 42
output buffers . 42
port in redirect . 42
postpone output . 43
read ahead . 43
recursive error pages . 43
request pool size . 43
reset timedout connection 43
resolver . 44
resolver timeout . 45
root . 45
satisfy . 45
send lowat . 46
send timeout . 46
sendfile . 46
sendfile max chunk . 47
server . 47
server name . 47
server name in redirect 49
server names hash bucket size 49
server names hash max size 49
server tokens . 50
subrequest output buffer size 50
tcp nodelay . 50
tcp nopush . 50
try files . 51
types . 53
types hash bucket size 53
types hash max size . 53

Nginx, Inc. p.20 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

underscores in headers 54
variables hash bucket size 54
variables hash max size 54

2.1.2 Embedded Variables . 54

2.1.1 Directives

absolute redirect

Syntax: absolute_redirect on | off;

Default on

Context: http, server, location
This directive appeared in version 1.11.8.

If disabled, redirects issued by nginx will be relative.
See also server name in redirect and port in redirect directives.

aio

Syntax: aio on | off | threads[=pool];

Default off

Context: http, server, location
This directive appeared in version 0.8.11.

Enables or disables the use of asynchronous file I/O (AIO) on FreeBSD and
Linux:

location /video/ {
aio on;
output_buffers 1 64k;

}

On FreeBSD, AIO can be used starting from FreeBSD 4.3. Prior to
FreeBSD 11.0, AIO can either be linked statically into a kernel:

options VFS_AIO

or loaded dynamically as a kernel loadable module:

kldload aio

On Linux, AIO can be used starting from kernel version 2.6.22. Also, it is
necessary to enable directio, or otherwise reading will be blocking:

location /video/ {
aio on;
directio 512;
output_buffers 1 128k;

}

On Linux, directio can only be used for reading blocks that are aligned on
512-byte boundaries (or 4K for XFS). File’s unaligned end is read in blocking

Nginx, Inc. p.21 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

mode. The same holds true for byte range requests and for FLV requests not
from the beginning of a file: reading of unaligned data at the beginning and
end of a file will be blocking.

When both AIO and sendfile are enabled on Linux, AIO is used for files
that are larger than or equal to the size specified in the directio directive, while
sendfile is used for files of smaller sizes or when directio is disabled.

location /video/ {
sendfile on;
aio on;
directio 8m;

}

Finally, files can be read and sent using multi-threading (1.7.11), without
blocking a worker process:

location /video/ {
sendfile on;
aio threads;

}

Read and send file operations are offloaded to threads of the specified pool.
If the pool name is omitted, the pool with the name “default” is used. The
pool name can also be set with variables:

aio threads=pool$disk;

By default, multi-threading is disabled, it should be enabled with the
--with-threads configuration parameter. Currently, multi-threading is
compatible only with the epoll, kqueue, and eventport methods. Multi-
threaded sending of files is only supported on Linux.

See also the sendfile directive.

aio write

Syntax: aio_write on | off;

Default off

Context: http, server, location
This directive appeared in version 1.9.13.

If aio is enabled, specifies whether it is used for writing files. Currently,
this only works when using aio threads and is limited to writing temporary
files with data received from proxied servers.

alias

Syntax: alias path;

Default —

Context: location

Defines a replacement for the specified location. For example, with the
following configuration

Nginx, Inc. p.22 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

location /i/ {
alias /data/w3/images/;

}

on request of “/i/top.gif”, the file /data/w3/images/top.gif will
be sent.

The path value can contain variables, except $document root and
$realpath root.

If alias is used inside a location defined with a regular expression then
such regular expression should contain captures and alias should refer to
these captures (0.7.40), for example:

location ~ ^/users/(.+\.(?:gif|jpe?g|png))$ {
alias /data/w3/images/$1;

}

When location matches the last part of the directive’s value:

location /images/ {
alias /data/w3/images/;

}

it is better to use the root directive instead:

location /images/ {
root /data/w3;

}

auth delay

Syntax: auth_delay time;

Default 0s

Context: http, server, location
This directive appeared in version 1.17.10.

Delays processing of unauthorized requests with 401 response code to
prevent timing attacks when access is limited by password, by the result of
subrequest, or by JWT.

chunked transfer encoding

Syntax: chunked_transfer_encoding on | off;

Default on

Context: http, server, location

Allows disabling chunked transfer encoding in HTTP/1.1. It may come in
handy when using a software failing to support chunked encoding despite the
standard’s requirement.

Nginx, Inc. p.23 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

client body buffer size

Syntax: client_body_buffer_size size;

Default 8k|16k

Context: http, server, location

Sets buffer size for reading client request body. In case the request body is
larger than the buffer, the whole body or only its part is written to a temporary
file. By default, buffer size is equal to two memory pages. This is 8K on x86,
other 32-bit platforms, and x86-64. It is usually 16K on other 64-bit platforms.

client body in file only

Syntax: client_body_in_file_only on | clean | off;

Default off

Context: http, server, location

Determines whether nginx should save the entire client request body into
a file. This directive can be used during debugging, or when using the
$request body file variable, or the $r->request body file method of the module
ngx http perl module.

When set to the value on, temporary files are not removed after request
processing.

The value clean will cause the temporary files left after request processing
to be removed.

client body in single buffer

Syntax: client_body_in_single_buffer on | off;

Default off

Context: http, server, location

Determines whether nginx should save the entire client request body in
a single buffer. The directive is recommended when using the $request body
variable, to save the number of copy operations involved.

client body temp path

Syntax: client_body_temp_path path [level1 [level2 [level3]]];

Default client_body_temp

Context: http, server, location

Defines a directory for storing temporary files holding client request bodies.
Up to three-level subdirectory hierarchy can be used under the specified
directory. For example, in the following configuration

client_body_temp_path /spool/nginx/client_temp 1 2;

a path to a temporary file might look like this:

Nginx, Inc. p.24 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

/spool/nginx/client_temp/7/45/00000123457

client body timeout

Syntax: client_body_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading client request body. The timeout is set only
for a period between two successive read operations, not for the transmission
of the whole request body. If a client does not transmit anything within this
time, the request is terminated with the 408 Request Time-out error.

client header buffer size

Syntax: client_header_buffer_size size;

Default 1k

Context: http, server

Sets buffer size for reading client request header. For most requests, a
buffer of 1K bytes is enough. However, if a request includes long cookies, or
comes from a WAP client, it may not fit into 1K. If a request line or a request
header field does not fit into this buffer then larger buffers, configured by the
large client header buffers directive, are allocated.

If the directive is specified on the server level, the value from the default
server can be used. Details are provided in the “Virtual server selection”
section.

client header timeout

Syntax: client_header_timeout time;

Default 60s

Context: http, server

Defines a timeout for reading client request header. If a client does not
transmit the entire header within this time, the request is terminated with the
408 Request Time-out error.

client max body size

Syntax: client_max_body_size size;

Default 1m

Context: http, server, location

Sets the maximum allowed size of the client request body. If the size
in a request exceeds the configured value, the 413 Request Entity Too
Large error is returned to the client. Please be aware that browsers cannot

Nginx, Inc. p.25 of 563

https://nginx.org/en/docs/http/server_names.html#virtual_server_selection

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

correctly display this error. Setting size to 0 disables checking of client request
body size.

connection pool size

Syntax: connection_pool_size size;

Default 256|512

Context: http, server

Allows accurate tuning of per-connection memory allocations. This
directive has minimal impact on performance and should not generally be
used. By default, the size is equal to 256 bytes on 32-bit platforms and 512
bytes on 64-bit platforms.

Prior to version 1.9.8, the default value was 256 on all platforms.

default type

Syntax: default_type mime-type;

Default text/plain

Context: http, server, location

Defines the default MIME type of a response. Mapping of file name
extensions to MIME types can be set with the types directive.

directio

Syntax: directio size | off;

Default off

Context: http, server, location
This directive appeared in version 0.7.7.

Enables the use of the O_DIRECT flag (FreeBSD, Linux), the F_NOCACHE
flag (macOS), or the directio function (Solaris), when reading files that are
larger than or equal to the specified size. The directive automatically disables
(0.7.15) the use of sendfile for a given request. It can be useful for serving large
files:

directio 4m;

or when using aio on Linux.

directio alignment

Syntax: directio_alignment size;

Default 512

Context: http, server, location
This directive appeared in version 0.8.11.

Nginx, Inc. p.26 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Sets the alignment for directio. In most cases, a 512-byte alignment is
enough. However, when using XFS under Linux, it needs to be increased to
4K.

disable symlinks

Syntax: disable_symlinks off;

Syntax: disable_symlinks on | if_not_owner [from=part];

Default off

Context: http, server, location
This directive appeared in version 1.1.15.

Determines how symbolic links should be treated when opening files:

off
Symbolic links in the pathname are allowed and not checked. This is the
default behavior.

on
If any component of the pathname is a symbolic link, access to a file is
denied.

if_not_owner
Access to a file is denied if any component of the pathname is a symbolic
link, and the link and object that the link points to have different owners.

from=part
When checking symbolic links (parameters on and if_not_owner), all
components of the pathname are normally checked. Checking of symbolic
links in the initial part of the pathname may be avoided by specifying
additionally the from=part parameter. In this case, symbolic links are
checked only from the pathname component that follows the specified
initial part. If the value is not an initial part of the pathname checked,
the whole pathname is checked as if this parameter was not specified
at all. If the value matches the whole file name, symbolic links are not
checked. The parameter value can contain variables.

Example:

disable_symlinks on from=$document_root;

This directive is only available on systems that have the openat and
fstatat interfaces. Such systems include modern versions of FreeBSD,
Linux, and Solaris.

Parameters on and if_not_owner add a processing overhead.

On systems that do not support opening of directories only for search,
to use these parameters it is required that worker processes have read
permissions for all directories being checked.

Nginx, Inc. p.27 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

The ngx http autoindex module, ngx http random index module, and
ngx http dav module modules currently ignore this directive.

error page

Syntax: error_page code . . . [=[response]] uri;

Default —

Context: http, server, location, if in location

Defines the URI that will be shown for the specified errors. A uri value can
contain variables.

Example:

error_page 404 /404.html;
error_page 500 502 503 504 /50x.html;

This causes an internal redirect to the specified uri with the client request
method changed to “GET” (for all methods other than “GET” and “HEAD”).

Furthermore, it is possible to change the response code to another using
the “=response” syntax, for example:

error_page 404 =200 /empty.gif;

If an error response is processed by a proxied server or a FastCGI/uwsgi/
SCGI/gRPC server, and the server may return different response codes (e.g.,
200, 302, 401 or 404), it is possible to respond with the code it returns:

error_page 404 = /404.php;

If there is no need to change URI and method during internal redirection
it is possible to pass error processing into a named location:

location / {
error_page 404 = @fallback;

}

location @fallback {
proxy_pass http://backend;

}

If uri processing leads to an error, the status code of the last occurred
error is returned to the client.

It is also possible to use URL redirects for error processing:

error_page 403 http://example.com/forbidden.html;
error_page 404 =301 http://example.com/notfound.html;

In this case, by default, the response code 302 is returned to the client. It
can only be changed to one of the redirect status codes (301, 302, 303, 307,
and 308).

Nginx, Inc. p.28 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

The code 307 was not treated as a redirect until versions 1.1.16 and 1.0.13.

The code 308 was not treated as a redirect until version 1.13.0.

These directives are inherited from the previous configuration level if and
only if there are no error_page directives defined on the current level.

etag

Syntax: etag on | off;

Default on

Context: http, server, location
This directive appeared in version 1.3.3.

Enables or disables automatic generation of the ETag response header field
for static resources.

http

Syntax: http { . . . }
Default —

Context: main

Provides the configuration file context in which the HTTP server directives
are specified.

if modified since

Syntax: if_modified_since off | exact | before;

Default exact

Context: http, server, location
This directive appeared in version 0.7.24.

Specifies how to compare modification time of a response with the time in
the If-Modified-Since request header field:

off
the response is always considered modified (0.7.34);

exact
exact match;

before
modification time of the response is less than or equal to the time in the
If-Modified-Since request header field.

ignore invalid headers

Syntax: ignore_invalid_headers on | off;

Default on

Context: http, server

Nginx, Inc. p.29 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Controls whether header fields with invalid names should be ignored.
Valid names are composed of English letters, digits, hyphens, and possibly
underscores (as controlled by the underscores in headers directive).

If the directive is specified on the server level, the value from the default
server can be used. Details are provided in the “Virtual server selection”
section.

internal

Syntax: internal;

Default —

Context: location

Specifies that a given location can only be used for internal requests. For
external requests, the client error 404 Not Found is returned. Internal
requests are the following:

• requests redirected by the error page, index, internal redirect, random -
index, and try files directives;

• requests redirected by the X-Accel-Redirect response header field
from an upstream server;

• subrequests formed by the “include virtual” command of the
ngx http ssi module module, by the ngx http addition module module
directives, and by auth request and mirror directives;

• requests changed by the rewrite directive.

Example:

error_page 404 /404.html;

location = /404.html {
internal;

}

There is a limit of 10 internal redirects per request to prevent request
processing cycles that can occur in incorrect configurations. If this limit is
reached, the error 500 Internal Server Error is returned. In such
cases, the “rewrite or internal redirection cycle” message can be seen in the
error log.

keepalive disable

Syntax: keepalive_disable none | browser . . . ;

Default msie6

Context: http, server, location

Nginx, Inc. p.30 of 563

https://nginx.org/en/docs/http/server_names.html#virtual_server_selection

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Disables keep-alive connections with misbehaving browsers. The browser
parameters specify which browsers will be affected. The value msie6 disables
keep-alive connections with old versions of MSIE, once a POST request is
received. The value safari disables keep-alive connections with Safari and
Safari-like browsers on macOS and macOS-like operating systems. The value
none enables keep-alive connections with all browsers.

Prior to version 1.1.18, the value safari matched all Safari and Safari-
like browsers on all operating systems, and keep-alive connections with them
were disabled by default.

keepalive requests

Syntax: keepalive_requests number;

Default 1000

Context: http, server, location
This directive appeared in version 0.8.0.

Sets the maximum number of requests that can be served through one
keep-alive connection. After the maximum number of requests are made, the
connection is closed.

Closing connections periodically is necessary to free per-connection memory
allocations. Therefore, using too high maximum number of requests could
result in excessive memory usage and not recommended.

Prior to version 1.19.10, the default value was 100.

keepalive time

Syntax: keepalive_time time;

Default 1h

Context: http, server, location
This directive appeared in version 1.19.10.

Limits the maximum time during which requests can be processed through
one keep-alive connection. After this time is reached, the connection is closed
following the subsequent request processing.

keepalive timeout

Syntax: keepalive_timeout timeout [header timeout];

Default 75s

Context: http, server, location

The first parameter sets a timeout during which a keep-alive client
connection will stay open on the server side. The zero value disables keep-
alive client connections. The optional second parameter sets a value in the
Keep-Alive: timeout=time response header field. Two parameters
may differ.

Nginx, Inc. p.31 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

The Keep-Alive: timeout=time header field is recognized by
Mozilla and Konqueror. MSIE closes keep-alive connections by itself in about
60 seconds.

large client header buffers

Syntax: large_client_header_buffers number size;

Default 4 8k

Context: http, server

Sets the maximum number and size of buffers used for reading large client
request header. A request line cannot exceed the size of one buffer, or the
414 Request-URI Too Large error is returned to the client. A request
header field cannot exceed the size of one buffer as well, or the 400 Bad
Request error is returned to the client. Buffers are allocated only on demand.
By default, the buffer size is equal to 8K bytes. If after the end of request
processing a connection is transitioned into the keep-alive state, these buffers
are released.

If the directive is specified on the server level, the value from the default
server can be used. Details are provided in the “Virtual server selection”
section.

limit except

Syntax: limit_except method . . . { . . . }
Default —

Context: location

Limits allowed HTTP methods inside a location. The method parameter
can be one of the following: GET, HEAD, POST, PUT, DELETE, MKCOL,
COPY, MOVE, OPTIONS, PROPFIND, PROPPATCH, LOCK, UNLOCK, or PATCH.
Allowing the GET method makes the HEAD method also allowed. Access
to other methods can be limited using the ngx http access module, ngx -
http auth basic module, and ngx http auth jwt module (1.13.10) modules
directives:

limit_except GET {
allow 192.168.1.0/32;
deny all;

}

Please note that this will limit access to all methods except GET and
HEAD.

limit rate

Syntax: limit_rate rate;

Default 0

Context: http, server, location, if in location

Nginx, Inc. p.32 of 563

https://nginx.org/en/docs/http/server_names.html#virtual_server_selection

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Limits the rate of response transmission to a client. The rate is specified
in bytes per second. The zero value disables rate limiting.

The limit is set per a request, and so if a client simultaneously opens two
connections, the overall rate will be twice as much as the specified limit.

Parameter value can contain variables (1.17.0). It may be useful in cases
where rate should be limited depending on a certain condition:

map $slow $rate {
1 4k;
2 8k;

}

limit_rate $rate;

Rate limit can also be set in the $limit rate variable, however, since version
1.17.0, this method is not recommended:

server {

if ($slow) {
set $limit_rate 4k;

}

...
}

Rate limit can also be set in the X-Accel-Limit-Rate header field
of a proxied server response. This capability can be disabled using the
proxy ignore headers, fastcgi ignore headers, uwsgi ignore headers, and scgi -
ignore headers directives.

limit rate after

Syntax: limit_rate_after size;

Default 0

Context: http, server, location, if in location
This directive appeared in version 0.8.0.

Sets the initial amount after which the further transmission of a response
to a client will be rate limited. Parameter value can contain variables (1.17.0).

Example:

location /flv/ {
flv;
limit_rate_after 500k;
limit_rate 50k;

}

lingering close

Syntax: lingering_close off | on | always;

Default on

Context: http, server, location

Nginx, Inc. p.33 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

This directive appeared in versions 1.1.0 and 1.0.6.

Controls how nginx closes client connections.
The default value “on” instructs nginx to wait for and process additional

data from a client before fully closing a connection, but only if heuristics
suggests that a client may be sending more data.

The value “always” will cause nginx to unconditionally wait for and
process additional client data.

The value “off” tells nginx to never wait for more data and close the
connection immediately. This behavior breaks the protocol and should not be
used under normal circumstances.

To control closing HTTP/2 connections, the directive must be specified on
the server level (1.19.1).

lingering time

Syntax: lingering_time time;

Default 30s

Context: http, server, location

When lingering close is in effect, this directive specifies the maximum time
during which nginx will process (read and ignore) additional data coming from
a client. After that, the connection will be closed, even if there will be more
data.

lingering timeout

Syntax: lingering_timeout time;

Default 5s

Context: http, server, location

When lingering close is in effect, this directive specifies the maximum
waiting time for more client data to arrive. If data are not received during
this time, the connection is closed. Otherwise, the data are read and ignored,
and nginx starts waiting for more data again. The “wait-read-ignore” cycle is
repeated, but no longer than specified by the lingering time directive.

Nginx, Inc. p.34 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

listen

Syntax: listen address[:port] [default_server] [ssl] [http2 | quic]

[proxy_protocol] [setfib=number] [fastopen=number]

[backlog=number] [rcvbuf=size] [sndbuf=size]

[accept_filter=filter] [deferred] [bind] [ipv6only=on|off]

[reuseport] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Syntax: listen port [default_server] [ssl] [http2 | quic]

[proxy_protocol] [setfib=number] [fastopen=number]

[backlog=number] [rcvbuf=size] [sndbuf=size]

[accept_filter=filter] [deferred] [bind] [ipv6only=on|off]

[reuseport] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Syntax: listen unix:path [default_server] [ssl] [http2 | quic]

[proxy_protocol] [backlog=number] [rcvbuf=size] [sndbuf=size]

[accept_filter=filter] [deferred] [bind]

[so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Default *:80 | *:8000

Context: server

Sets the address and port for IP, or the path for a UNIX-domain socket on
which the server will accept requests. Both address and port, or only address
or only port can be specified. An address may also be a hostname, for example:

listen 127.0.0.1:8000;
listen 127.0.0.1;
listen 8000;
listen *:8000;
listen localhost:8000;

IPv6 addresses (0.7.36) are specified in square brackets:

listen [::]:8000;
listen [::1];

UNIX-domain sockets (0.8.21) are specified with the “unix:” prefix:

listen unix:/var/run/nginx.sock;

If only address is given, the port 80 is used.
If the directive is not present then either *:80 is used if nginx runs with

the superuser privileges, or *:8000 otherwise.
The default_server parameter, if present, will cause the server to

become the default server for the specified address:port pair. If none of the
directives have the default_server parameter then the first server with
the address:port pair will be the default server for this pair.

In versions prior to 0.8.21 this parameter is named simply default.

The ssl parameter (0.7.14) allows specifying that all connections accepted
on this port should work in SSL mode. This allows for a more compact
configuration for the server that handles both HTTP and HTTPS requests.

Nginx, Inc. p.35 of 563

https://nginx.org/en/docs/http/configuring_https_servers.html#single_http_https_server

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

The http2 parameter (1.9.5) configures the port to accept HTTP/2
connections. Normally, for this to work the ssl parameter should be specified
as well, but nginx can also be configured to accept HTTP/2 connections
without SSL.

The parameter is deprecated, the http2 directive should be used instead.

The quic parameter (1.25.0) configures the port to accept QUIC
connections.

The proxy_protocol parameter (1.5.12) allows specifying that all
connections accepted on this port should use the PROXY protocol.

The PROXY protocol version 2 is supported since version 1.13.11.

The listen directive can have several additional parameters specific to
socket-related system calls. These parameters can be specified in any listen
directive, but only once for a given address:port pair.

In versions prior to 0.8.21, they could only be specified in the listen
directive together with the default parameter.

setfib=number
this parameter (0.8.44) sets the associated routing table, FIB (the
SO_SETFIB option) for the listening socket. This currently works only
on FreeBSD.

fastopen=number
enables “TCP Fast Open” for the listening socket (1.5.8) and limits
the maximum length for the queue of connections that have not yet
completed the three-way handshake.

Do not enable this feature unless the server can handle receiving the
same SYN packet with data more than once.

backlog=number
sets the backlog parameter in the listen call that limits the
maximum length for the queue of pending connections. By default,
backlog is set to -1 on FreeBSD, DragonFly BSD, and macOS, and
to 511 on other platforms.

rcvbuf=size
sets the receive buffer size (the SO_RCVBUF option) for the listening
socket.

sndbuf=size
sets the send buffer size (the SO_SNDBUF option) for the listening socket.

accept_filter=filter
sets the name of accept filter (the SO_ACCEPTFILTER option) for the
listening socket that filters incoming connections before passing them
to accept. This works only on FreeBSD and NetBSD 5.0+. Possible
values are dataready and httpready.

Nginx, Inc. p.36 of 563

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
http://en.wikipedia.org/wiki/TCP_Fast_Open
https://datatracker.ietf.org/doc/html/rfc7413#section-5.1
https://datatracker.ietf.org/doc/html/rfc7413#section-6.1
https://datatracker.ietf.org/doc/html/rfc7413#section-6.1
http://man.freebsd.org/accf_data
http://man.freebsd.org/accf_http

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

deferred
instructs to use a deferred accept (the TCP_DEFER_ACCEPT socket
option) on Linux.

bind
instructs to make a separate bind call for a given address:port pair. This
is useful because if there are several listen directives with the same
port but different addresses, and one of the listen directives listens on
all addresses for the given port (*:port), nginx will bind only to *:port.
It should be noted that the getsockname system call will be made in
this case to determine the address that accepted the connection. If the
setfib, fastopen, backlog, rcvbuf, sndbuf, accept_filter,
deferred, ipv6only, reuseport, or so_keepalive parameters
are used then for a given address:port pair a separate bind call will
always be made.

ipv6only=on|off
this parameter (0.7.42) determines (via the IPV6_V6ONLY socket
option) whether an IPv6 socket listening on a wildcard address [::]
will accept only IPv6 connections or both IPv6 and IPv4 connections.
This parameter is turned on by default. It can only be set once on start.

Prior to version 1.3.4, if this parameter was omitted then the operating
system’s settings were in effect for the socket.

reuseport
this parameter (1.9.1) instructs to create an individual listening socket for
each worker process (using the SO_REUSEPORT socket option on Linux
3.9+ and DragonFly BSD, or SO_REUSEPORT_LB on FreeBSD 12+),
allowing a kernel to distribute incoming connections between worker
processes. This currently works only on Linux 3.9+, DragonFly BSD,
and FreeBSD 12+ (1.15.1).

Inappropriate use of this option may have its security implications.

so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]
this parameter (1.1.11) configures the “TCP keepalive” behavior for
the listening socket. If this parameter is omitted then the operating
system’s settings will be in effect for the socket. If it is set to the
value “on”, the SO_KEEPALIVE option is turned on for the socket.
If it is set to the value “off”, the SO_KEEPALIVE option is turned
off for the socket. Some operating systems support setting of TCP
keepalive parameters on a per-socket basis using the TCP_KEEPIDLE,
TCP_KEEPINTVL, and TCP_KEEPCNT socket options. On such systems
(currently, Linux 2.4+, NetBSD 5+, and FreeBSD 9.0-STABLE), they
can be configured using the keepidle, keepintvl, and keepcnt parameters.
One or two parameters may be omitted, in which case the system default
setting for the corresponding socket option will be in effect. For example,

Nginx, Inc. p.37 of 563

http://man7.org/linux/man-pages/man7/socket.7.html

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

so_keepalive=30m::10

will set the idle timeout (TCP_KEEPIDLE) to 30 minutes, leave the probe
interval (TCP_KEEPINTVL) at its system default, and set the probes
count (TCP_KEEPCNT) to 10 probes.

Example:

listen 127.0.0.1 default_server accept_filter=dataready backlog=1024;

location

Syntax: location [= | ~ | ~* | ˆ~] uri { . . . }
Syntax: location @name { . . . }
Default —

Context: server, location

Sets configuration depending on a request URI.
The matching is performed against a normalized URI, after decoding

the text encoded in the “%XX” form, resolving references to relative path
components “.” and “..”, and possible compression of two or more adjacent
slashes into a single slash.

A location can either be defined by a prefix string, or by a regular
expression. Regular expressions are specified with the preceding “~*”
modifier (for case-insensitive matching), or the “~” modifier (for case-sensitive
matching). To find location matching a given request, nginx first checks
locations defined using the prefix strings (prefix locations). Among them,
the location with the longest matching prefix is selected and remembered.
Then regular expressions are checked, in the order of their appearance in the
configuration file. The search of regular expressions terminates on the first
match, and the corresponding configuration is used. If no match with a regular
expression is found then the configuration of the prefix location remembered
earlier is used.

location blocks can be nested, with some exceptions mentioned below.
For case-insensitive operating systems such as macOS and Cygwin,

matching with prefix strings ignores a case (0.7.7). However, comparison is
limited to one-byte locales.

Regular expressions can contain captures (0.7.40) that can later be used in
other directives.

If the longest matching prefix location has the “ˆ~” modifier then regular
expressions are not checked.

Also, using the “=” modifier it is possible to define an exact match of
URI and location. If an exact match is found, the search terminates. For
example, if a “/” request happens frequently, defining “location = /” will
speed up the processing of these requests, as search terminates right after the
first comparison. Such a location cannot obviously contain nested locations.

Nginx, Inc. p.38 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

In versions from 0.7.1 to 0.8.41, if a request matched the prefix location
without the “=” and “ˆ~” modifiers, the search also terminated and regular
expressions were not checked.

Let’s illustrate the above by an example:

location = / {
[configuration A]

}

location / {
[configuration B]

}

location /documents/ {
[configuration C]

}

location ^~ /images/ {
[configuration D]

}

location ~* \.(gif|jpg|jpeg)$ {
[configuration E]

}

The “/” request will match configuration A, the “/index.html”
request will match configuration B, the “/documents/document.html”
request will match configuration C, the “/images/1.gif” request will
match configuration D, and the “/documents/1.jpg” request will match
configuration E.

The “@” prefix defines a named location. Such a location is not used for
a regular request processing, but instead used for request redirection. They
cannot be nested, and cannot contain nested locations.

If a location is defined by a prefix string that ends with the slash character,
and requests are processed by one of proxy pass, fastcgi pass, uwsgi pass,
scgi pass, memcached pass, or grpc pass, then the special processing is
performed. In response to a request with URI equal to this string, but without
the trailing slash, a permanent redirect with the code 301 will be returned to
the requested URI with the slash appended. If this is not desired, an exact
match of the URI and location could be defined like this:

location /user/ {
proxy_pass http://user.example.com;

}

location = /user {
proxy_pass http://login.example.com;

}

log not found

Syntax: log_not_found on | off;

Default on

Context: http, server, location

Nginx, Inc. p.39 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Enables or disables logging of errors about not found files into error log.

log subrequest

Syntax: log_subrequest on | off;

Default off

Context: http, server, location

Enables or disables logging of subrequests into access log.

max ranges

Syntax: max_ranges number;

Default —

Context: http, server, location
This directive appeared in version 1.1.2.

Limits the maximum allowed number of ranges in byte-range requests.
Requests that exceed the limit are processed as if there were no byte ranges
specified. By default, the number of ranges is not limited. The zero value
disables the byte-range support completely.

merge slashes

Syntax: merge_slashes on | off;

Default on

Context: http, server

Enables or disables compression of two or more adjacent slashes in a URI
into a single slash.

Note that compression is essential for the correct matching of prefix string
and regular expression locations. Without it, the “//scripts/one.php”
request would not match

location /scripts/ {
...

}

and might be processed as a static file. So it gets converted to“/scripts/
one.php”.

Turning the compression off can become necessary if a URI contains
base64-encoded names, since base64 uses the“/”character internally. However,
for security considerations, it is better to avoid turning the compression off.

If the directive is specified on the server level, the value from the default
server can be used. Details are provided in the “Virtual server selection”
section.

Nginx, Inc. p.40 of 563

https://nginx.org/en/docs/http/server_names.html#virtual_server_selection

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

msie padding

Syntax: msie_padding on | off;

Default on

Context: http, server, location

Enables or disables adding comments to responses for MSIE clients with
status greater than 400 to increase the response size to 512 bytes.

msie refresh

Syntax: msie_refresh on | off;

Default off

Context: http, server, location

Enables or disables issuing refreshes instead of redirects for MSIE clients.

open file cache

Syntax: open_file_cache off;

Syntax: open_file_cache max=N [inactive=time];

Default off

Context: http, server, location

Configures a cache that can store:

• open file descriptors, their sizes and modification times;

• information on existence of directories;

• file lookup errors, such as “file not found”, “no read permission”, and so
on.

Caching of errors should be enabled separately by the open file cache -
errors directive.

The directive has the following parameters:

max
sets the maximum number of elements in the cache; on cache overflow
the least recently used (LRU) elements are removed;

inactive
defines a time after which an element is removed from the cache if it has
not been accessed during this time; by default, it is 60 seconds;

off
disables the cache.

Example:

open_file_cache max=1000 inactive=20s;
open_file_cache_valid 30s;
open_file_cache_min_uses 2;
open_file_cache_errors on;

Nginx, Inc. p.41 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

open file cache errors

Syntax: open_file_cache_errors on | off;

Default off

Context: http, server, location

Enables or disables caching of file lookup errors by open file cache.

open file cache min uses

Syntax: open_file_cache_min_uses number;

Default 1

Context: http, server, location

Sets the minimum number of file accesses during the period configured by
the inactive parameter of the open file cache directive, required for a file
descriptor to remain open in the cache.

open file cache valid

Syntax: open_file_cache_valid time;

Default 60s

Context: http, server, location

Sets a time after which open file cache elements should be validated.

output buffers

Syntax: output_buffers number size;

Default 2 32k

Context: http, server, location

Sets the number and size of the buffers used for reading a response from a
disk.

Prior to version 1.9.5, the default value was 1 32k.

port in redirect

Syntax: port_in_redirect on | off;

Default on

Context: http, server, location

Enables or disables specifying the port in absolute redirects issued by nginx.
The use of the primary server name in redirects is controlled by the server -

name in redirect directive.

Nginx, Inc. p.42 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

postpone output

Syntax: postpone_output size;

Default 1460

Context: http, server, location

If possible, the transmission of client data will be postponed until nginx
has at least size bytes of data to send. The zero value disables postponing data
transmission.

read ahead

Syntax: read_ahead size;

Default 0

Context: http, server, location

Sets the amount of pre-reading for the kernel when working with file.
On Linux, the posix_fadvise(0, 0, 0, POSIX_FADV_SEQUEN-

TIAL) system call is used, and so the size parameter is ignored.
On FreeBSD, the fcntl(O_READAHEAD, size) system call, supported

since FreeBSD 9.0-CURRENT, is used. FreeBSD 7 has to be patched.

recursive error pages

Syntax: recursive_error_pages on | off;

Default off

Context: http, server, location

Enables or disables doing several redirects using the error page directive.
The number of such redirects is limited.

request pool size

Syntax: request_pool_size size;

Default 4k

Context: http, server

Allows accurate tuning of per-request memory allocations. This directive
has minimal impact on performance and should not generally be used.

reset timedout connection

Syntax: reset_timedout_connection on | off;

Default off

Context: http, server, location

Enables or disables resetting timed out connections and connections closed
with the non-standard code 444 (1.15.2). The reset is performed as follows.
Before closing a socket, the SO_LINGER option is set on it with a timeout
value of 0. When the socket is closed, TCP RST is sent to the client, and

Nginx, Inc. p.43 of 563

http://sysoev.ru/freebsd/patch.readahead.txt

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

all memory occupied by this socket is released. This helps avoid keeping an
already closed socket with filled buffers in a FIN WAIT1 state for a long time.

It should be noted that timed out keep-alive connections are closed
normally.

resolver

Syntax: resolver address . . . [valid=time] [ipv4=on|off] [ipv6=on|off]

[status_zone=zone];

Default —

Context: http, server, location

Configures name servers used to resolve names of upstream servers into
addresses, for example:

resolver 127.0.0.1 [::1]:5353;

The address can be specified as a domain name or IP address, with an
optional port (1.3.1, 1.2.2). If port is not specified, the port 53 is used. Name
servers are queried in a round-robin fashion.

Before version 1.1.7, only a single name server could be configured.
Specifying name servers using IPv6 addresses is supported starting from
versions 1.3.1 and 1.2.2.

By default, nginx will look up both IPv4 and IPv6 addresses while resolving.
If looking up of IPv4 or IPv6 addresses is not desired, the ipv4=off (1.23.1)
or the ipv6=off parameter can be specified.

Resolving of names into IPv6 addresses is supported starting from version
1.5.8.

By default, nginx caches answers using the TTL value of a response. An
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid=30s;

Before version 1.1.9, tuning of caching time was not possible, and nginx
always cached answers for the duration of 5 minutes.

To prevent DNS spoofing, it is recommended configuring DNS servers in
a properly secured trusted local network.

The optional status_zone parameter (1.17.1) enables collection of DNS
server statistics of requests and responses in the specified zone. The parameter
is available as part of our commercial subscription.

Nginx, Inc. p.44 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

resolver timeout

Syntax: resolver_timeout time;

Default 30s

Context: http, server, location

Sets a timeout for name resolution, for example:

resolver_timeout 5s;

root

Syntax: root path;

Default html

Context: http, server, location, if in location

Sets the root directory for requests. For example, with the following
configuration

location /i/ {
root /data/w3;

}

The /data/w3/i/top.gif file will be sent in response to the “/i/
top.gif” request.

The path value can contain variables, except $document root and
$realpath root.

A path to the file is constructed by merely adding a URI to the value of
the root directive. If a URI has to be modified, the alias directive should be
used.

satisfy

Syntax: satisfy all | any;

Default all

Context: http, server, location

Allows access if all (all) or at least one (any) of the ngx http -
access module, ngx http auth basic module, ngx http auth request module,
or ngx http auth jwt module modules allow access.

Example:

location / {
satisfy any;

allow 192.168.1.0/32;
deny all;

auth_basic "closed site";
auth_basic_user_file conf/htpasswd;

}

Nginx, Inc. p.45 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

send lowat

Syntax: send_lowat size;

Default 0

Context: http, server, location

If the directive is set to a non-zero value, nginx will try to minimize the
number of send operations on client sockets by using either NOTE_LOWAT flag
of the kqueue method or the SO_SNDLOWAT socket option. In both cases the
specified size is used.

This directive is ignored on Linux, Solaris, and Windows.

send timeout

Syntax: send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a response to the client. The timeout is set
only between two successive write operations, not for the transmission of the
whole response. If the client does not receive anything within this time, the
connection is closed.

sendfile

Syntax: sendfile on | off;

Default off

Context: http, server, location, if in location

Enables or disables the use of sendfile.
Starting from nginx 0.8.12 and FreeBSD 5.2.1, aio can be used to pre-load

data for sendfile:

location /video/ {
sendfile on;
tcp_nopush on;
aio on;

}

In this configuration, sendfile is called with the SF_NODISKIO flag
which causes it not to block on disk I/O, but, instead, report back that the
data are not in memory. nginx then initiates an asynchronous data load by
reading one byte. On the first read, the FreeBSD kernel loads the first 128K
bytes of a file into memory, although next reads will only load data in 16K
chunks. This can be changed using the read ahead directive.

Before version 1.7.11, pre-loading could be enabled with aio send-
file;.

Nginx, Inc. p.46 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

sendfile max chunk

Syntax: sendfile_max_chunk size;

Default 2m

Context: http, server, location

Limits the amount of data that can be transferred in a single sendfile
call. Without the limit, one fast connection may seize the worker process
entirely.

Prior to version 1.21.4, by default there was no limit.

server

Syntax: server { . . . }
Default —

Context: http

Sets configuration for a virtual server. There is no clear separation between
IP-based (based on the IP address) and name-based (based on the Host
request header field) virtual servers. Instead, the listen directives describe
all addresses and ports that should accept connections for the server, and
the server name directive lists all server names. Example configurations are
provided in the “How nginx processes a request” document.

server name

Syntax: server_name name . . . ;

Default ""

Context: server

Sets names of a virtual server, for example:

server {
server_name example.com www.example.com;

}

The first name becomes the primary server name.
Server names can include an asterisk (“*”) replacing the first or last part

of a name:

server {
server_name example.com *.example.com www.example.*;

}

Such names are called wildcard names.
The first two of the names mentioned above can be combined in one:

server {
server_name .example.com;

}

Nginx, Inc. p.47 of 563

https://nginx.org/en/docs/http/request_processing.html

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

It is also possible to use regular expressions in server names, preceding the
name with a tilde (“~”):

server {
server_name www.example.com ~^www\d+\.example\.com$;

}

Regular expressions can contain captures (0.7.40) that can later be used in
other directives:

server {
server_name ~^(www\.)?(.+)$;

location / {
root /sites/$2;

}
}

server {
server_name _;

location / {
root /sites/default;

}
}

Named captures in regular expressions create variables (0.8.25) that can
later be used in other directives:

server {
server_name ~^(www\.)?(?<domain>.+)$;

location / {
root /sites/$domain;

}
}

server {
server_name _;

location / {
root /sites/default;

}
}

If the directive’s parameter is set to “$hostname” (0.9.4), the machine’s
hostname is inserted.

It is also possible to specify an empty server name (0.7.11):

server {
server_name www.example.com "";

}

It allows this server to process requests without the Host header field —
instead of the default server — for the given address:port pair. This is the
default setting.

Nginx, Inc. p.48 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Before 0.8.48, the machine’s hostname was used by default.

During searching for a virtual server by name, if the name matches more
than one of the specified variants, (e.g. both a wildcard name and regular
expression match), the first matching variant will be chosen, in the following
order of priority:

1. the exact name

2. the longest wildcard name starting with an asterisk, e.g.
“*.example.com”

3. the longest wildcard name ending with an asterisk, e.g. “mail.*”

4. the first matching regular expression (in order of appearance in the
configuration file)

Detailed description of server names is provided in a separate Server names
document.

server name in redirect

Syntax: server_name_in_redirect on | off;

Default off

Context: http, server, location

Enables or disables the use of the primary server name, specified by the
server name directive, in absolute redirects issued by nginx. When the use of
the primary server name is disabled, the name from the Host request header
field is used. If this field is not present, the IP address of the server is used.

The use of a port in redirects is controlled by the port in redirect directive.

server names hash bucket size

Syntax: server_names_hash_bucket_size size;

Default 32|64|128

Context: http

Sets the bucket size for the server names hash tables. The default value
depends on the size of the processor’s cache line. The details of setting up
hash tables are provided in a separate document.

server names hash max size

Syntax: server_names_hash_max_size size;

Default 512

Context: http

Sets the maximum size of the server names hash tables. The details of
setting up hash tables are provided in a separate document.

Nginx, Inc. p.49 of 563

https://nginx.org/en/docs/http/server_names.html

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

server tokens

Syntax: server_tokens on | off | build | string;

Default on

Context: http, server, location

Enables or disables emitting nginx version on error pages and in the
Server response header field.

The build parameter (1.11.10) enables emitting a build name along with
nginx version.

Additionally, as part of our commercial subscription, starting from version
1.9.13 the signature on error pages and the Server response header field value
can be set explicitly using the string with variables. An empty string disables
the emission of the Server field.

subrequest output buffer size

Syntax: subrequest_output_buffer_size size;

Default 4k|8k

Context: http, server, location
This directive appeared in version 1.13.10.

Sets the size of the buffer used for storing the response body of a subrequest.
By default, the buffer size is equal to one memory page. This is either 4K or
8K, depending on a platform. It can be made smaller, however.

The directive is applicable only for subrequests with response bodies saved
into memory. For example, such subrequests are created by SSI.

tcp nodelay

Syntax: tcp_nodelay on | off;

Default on

Context: http, server, location

Enables or disables the use of the TCP_NODELAY option. The option
is enabled when a connection is transitioned into the keep-alive state.
Additionally, it is enabled on SSL connections, for unbuffered proxying, and
for WebSocket proxying.

tcp nopush

Syntax: tcp_nopush on | off;

Default off

Context: http, server, location

Enables or disables the use of the TCP_NOPUSH socket option on FreeBSD
or the TCP_CORK socket option on Linux. The options are enabled only when
sendfile is used. Enabling the option allows

• sending the response header and the beginning of a file in one packet, on
Linux and FreeBSD 4.*;

Nginx, Inc. p.50 of 563

https://nginx.org/en/docs/configure.html#build
https://nginx.com/products/
https://nginx.org/en/docs/http/websocket.html

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

• sending a file in full packets.

try files

Syntax: try_files file . . . uri;

Syntax: try_files file . . . =code;

Default —

Context: server, location

Checks the existence of files in the specified order and uses the first found
file for request processing; the processing is performed in the current context.
The path to a file is constructed from the file parameter according to the root
and alias directives. It is possible to check directory’s existence by specifying
a slash at the end of a name, e.g. “$uri/”. If none of the files were found,
an internal redirect to the uri specified in the last parameter is made. For
example:

location /images/ {
try_files $uri /images/default.gif;

}

location = /images/default.gif {
expires 30s;

}

The last parameter can also point to a named location, as shown in
examples below. Starting from version 0.7.51, the last parameter can also
be a code:

location / {
try_files $uri $uri/index.html $uri.html =404;

}

Example in proxying Mongrel:

location / {
try_files /system/maintenance.html

$uri $uri/index.html $uri.html
@mongrel;

}

location @mongrel {
proxy_pass http://mongrel;

}

Example for Drupal/FastCGI:

location / {
try_files $uri $uri/ @drupal;

}

location ~ \.php$ {
try_files $uri @drupal;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;

Nginx, Inc. p.51 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_param QUERY_STRING $args;

... other fastcgi_param’s
}

location @drupal {
fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to/index.php;
fastcgi_param SCRIPT_NAME /index.php;
fastcgi_param QUERY_STRING q=$uri&$args;

... other fastcgi_param’s
}

In the following example,

location / {
try_files $uri $uri/ @drupal;

}

the try_files directive is equivalent to

location / {
error_page 404 = @drupal;
log_not_found off;

}

And here,

location ~ \.php$ {
try_files $uri @drupal;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;

...
}

try_files checks the existence of the PHP file before passing the request
to the FastCGI server.

Example for Wordpress and Joomla:

location / {
try_files $uri $uri/ @wordpress;

}

location ~ \.php$ {
try_files $uri @wordpress;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;
... other fastcgi_param’s

}

location @wordpress {
fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to/index.php;
... other fastcgi_param’s

Nginx, Inc. p.52 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

}

types

Syntax: types { . . . }
Default text/html html; image/gif gif; image/jpeg jpg;

Context: http, server, location

Maps file name extensions to MIME types of responses. Extensions are
case-insensitive. Several extensions can be mapped to one type, for example:

types {
application/octet-stream bin exe dll;
application/octet-stream deb;
application/octet-stream dmg;

}

A sufficiently full mapping table is distributed with nginx in the conf/¬
mime.types file.

To make a particular location emit the “application/octet-stream”
MIME type for all requests, the following configuration can be used:

location /download/ {
types { }
default_type application/octet-stream;

}

types hash bucket size

Syntax: types_hash_bucket_size size;

Default 64

Context: http, server, location

Sets the bucket size for the types hash tables. The details of setting up
hash tables are provided in a separate document.

Prior to version 1.5.13, the default value depended on the size of the
processor’s cache line.

types hash max size

Syntax: types_hash_max_size size;

Default 1024

Context: http, server, location

Sets the maximum size of the types hash tables. The details of setting up
hash tables are provided in a separate document.

Nginx, Inc. p.53 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

underscores in headers

Syntax: underscores_in_headers on | off;

Default off

Context: http, server

Enables or disables the use of underscores in client request header fields.
When the use of underscores is disabled, request header fields whose names
contain underscores are marked as invalid and become subject to the ignore -
invalid headers directive.

If the directive is specified on the server level, the value from the default
server can be used. Details are provided in the “Virtual server selection”
section.

variables hash bucket size

Syntax: variables_hash_bucket_size size;

Default 64

Context: http

Sets the bucket size for the variables hash table. The details of setting up
hash tables are provided in a separate document.

variables hash max size

Syntax: variables_hash_max_size size;

Default 1024

Context: http

Sets the maximum size of the variables hash table. The details of setting
up hash tables are provided in a separate document.

Prior to version 1.5.13, the default value was 512.

2.1.2 Embedded Variables

The ngx_http_core_module module supports embedded variables with
names matching the Apache Server variables. First of all, these are variables
representing client request header fields, such as $http user agent, $http cookie,
and so on. Also there are other variables:

$arg name
argument name in the request line

$args
arguments in the request line

$binary remote addr
client address in a binary form, value’s length is always 4 bytes for IPv4
addresses or 16 bytes for IPv6 addresses

Nginx, Inc. p.54 of 563

https://nginx.org/en/docs/http/server_names.html#virtual_server_selection

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

$body bytes sent
number of bytes sent to a client, not counting the response header; this
variable is compatible with the“%B”parameter of the mod_log_config
Apache module

$bytes sent
number of bytes sent to a client (1.3.8, 1.2.5)

$connection
connection serial number (1.3.8, 1.2.5)

$connection requests
current number of requests made through a connection (1.3.8, 1.2.5)

$connection time
connection time in seconds with a milliseconds resolution (1.19.10)

$content length
Content-Length request header field

$content type
Content-Type request header field

$cookie name
the name cookie

$document root
root or alias directive’s value for the current request

$document uri
same as $uri

$host
in this order of precedence: host name from the request line, or host
name from the Host request header field, or the server name matching
a request

$hostname
host name

$http name
arbitrary request header field; the last part of a variable name is the field
name converted to lower case with dashes replaced by underscores

$https
“on” if connection operates in SSL mode, or an empty string otherwise

$is args
“?” if a request line has arguments, or an empty string otherwise

$limit rate
setting this variable enables response rate limiting; see limit rate

$msec
current time in seconds with the milliseconds resolution (1.3.9, 1.2.6)

$nginx version
nginx version

$pid
PID of the worker process

$pipe
“p” if request was pipelined, “.” otherwise (1.3.12, 1.2.7)

Nginx, Inc. p.55 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

$proxy protocol addr
client address from the PROXY protocol header (1.5.12)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$proxy protocol port
client port from the PROXY protocol header (1.11.0)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$proxy protocol server addr
server address from the PROXY protocol header (1.17.6)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$proxy protocol server port
server port from the PROXY protocol header (1.17.6)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$proxy protocol tlv name
TLV from the PROXY Protocol header (1.23.2). The name can be a
TLV type name or its numeric value. In the latter case, the value is
hexadecimal and should be prefixed with 0x:

$proxy_protocol_tlv_alpn
$proxy_protocol_tlv_0x01

SSL TLVs can also be accessed by TLV type name or its numeric value,
both prefixed by ssl_:

$proxy_protocol_tlv_ssl_version
$proxy_protocol_tlv_ssl_0x21

The following TLV type names are supported:

• alpn (0x01) - upper layer protocol used over the connection

• authority (0x02) - host name value passed by the client

• unique_id (0x05) - unique connection id

• netns (0x30) - name of the namespace

• ssl (0x20) - binary SSL TLV structure

The following SSL TLV type names are supported:

• ssl_version (0x21) - SSL version used in client connection

• ssl_cn (0x22) - SSL certificate Common Name

• ssl_cipher (0x23) - name of the used cipher

• ssl_sig_alg (0x24) - algorithm used to sign the certificate

• ssl_key_alg (0x25) - public-key algorithm

Also, the following special SSL TLV type name is supported:

Nginx, Inc. p.56 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

• ssl_verify - client SSL certificate verification result, 0 if the
client presented a certificate and it was successfully verified, non-
zero otherwise.

The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$query string
same as $args

$realpath root
an absolute pathname corresponding to the root or alias directive’s value
for the current request, with all symbolic links resolved to real paths

$remote addr
client address

$remote port
client port

$remote user
user name supplied with the Basic authentication

$request
full original request line

$request body
request body
The variable’s value is made available in locations processed by the
proxy pass, fastcgi pass, uwsgi pass, and scgi pass directives when the
request body was read to a memory buffer.

$request body file
name of a temporary file with the request body
At the end of processing, the file needs to be removed. To always write
the request body to a file, client body in file only needs to be enabled.
When the name of a temporary file is passed in a proxied request or in
a request to a FastCGI/uwsgi/SCGI server, passing the request body
should be disabled by the proxy pass request body off, fastcgi pass -
request body off, uwsgi pass request body off, or scgi pass request -
body off directives, respectively.

$request completion
“OK” if a request has completed, or an empty string otherwise

$request filename
file path for the current request, based on the root or alias directives,
and the request URI

$request id
unique request identifier generated from 16 random bytes, in hexadecimal
(1.11.0)

$request length
request length (including request line, header, and request body) (1.3.12,
1.2.7)

$request method
request method, usually “GET” or “POST”

Nginx, Inc. p.57 of 563

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

$request time
request processing time in seconds with a milliseconds resolution (1.3.9,
1.2.6); time elapsed since the first bytes were read from the client

$request uri
full original request URI (with arguments)

$scheme
request scheme, “http” or “https”

$sent http name
arbitrary response header field; the last part of a variable name is the
field name converted to lower case with dashes replaced by underscores

$sent trailer name
arbitrary field sent at the end of the response (1.13.2); the last part of
a variable name is the field name converted to lower case with dashes
replaced by underscores

$server addr
an address of the server which accepted a request
Computing a value of this variable usually requires one system call. To
avoid a system call, the listen directives must specify addresses and use
the bind parameter.

$server name
name of the server which accepted a request

$server port
port of the server which accepted a request

$server protocol
request protocol, usually “HTTP/1.0”, “HTTP/1.1”, “HTTP/2.0”, or
“HTTP/3.0”

$status
response status (1.3.2, 1.2.2)

$tcpinfo rtt, $tcpinfo rttvar, $tcpinfo snd cwnd, $tcpinfo rcv space
information about the client TCP connection; available on systems that
support the TCP_INFO socket option

$time iso8601
local time in the ISO 8601 standard format (1.3.12, 1.2.7)

$time local
local time in the Common Log Format (1.3.12, 1.2.7)

$uri
current URI in request, normalized
The value of $uri may change during request processing, e.g. when doing
internal redirects, or when using index files.

Nginx, Inc. p.58 of 563

CHAPTER 2. HTTP SERVER MODULES 2.2. MODULE NGX HTTP ACCESS MODULE

2.2 Module ngx http access module

2.2.1 Summary . 59
2.2.2 Example Configuration 59
2.2.3 Directives . 59

allow . 59
deny . 59

2.2.1 Summary

The ngx_http_access_module module allows limiting access to
certain client addresses.

Access can also be limited by password, by the result of subrequest, or
by JWT. Simultaneous limitation of access by address and by password is
controlled by the satisfy directive.

2.2.2 Example Configuration

location / {
deny 192.168.1.1;
allow 192.168.1.0/24;
allow 10.1.1.0/16;
allow 2001:0db8::/32;
deny all;

}

The rules are checked in sequence until the first match is found. In
this example, access is allowed only for IPv4 networks 10.1.1.0/16 and
192.168.1.0/24 excluding the address 192.168.1.1, and for IPv6
network 2001:0db8::/32. In case of a lot of rules, the use of the ngx -
http geo module module variables is preferable.

2.2.3 Directives

allow

Syntax: allow address | CIDR | unix: | all;

Default —

Context: http, server, location, limit except

Allows access for the specified network or address. If the special value
unix: is specified (1.5.1), allows access for all UNIX-domain sockets.

deny

Syntax: deny address | CIDR | unix: | all;

Default —

Context: http, server, location, limit except

Nginx, Inc. p.59 of 563

CHAPTER 2. HTTP SERVER MODULES 2.2. MODULE NGX HTTP ACCESS MODULE

Denies access for the specified network or address. If the special value
unix: is specified (1.5.1), denies access for all UNIX-domain sockets.

Nginx, Inc. p.60 of 563

CHAPTER 2. HTTP SERVER MODULES 2.3. MODULE NGX HTTP ADDITION MODULE

2.3 Module ngx http addition module

2.3.1 Summary . 61
2.3.2 Example Configuration 61
2.3.3 Directives . 61

add before body . 61
add after body . 61
addition types . 62

2.3.1 Summary

The ngx_http_addition_module module is a filter that adds text
before and after a response. This module is not built by default, it should
be enabled with the --with-http_addition_module configuration
parameter.

2.3.2 Example Configuration

location / {
add_before_body /before_action;
add_after_body /after_action;

}

2.3.3 Directives

add before body

Syntax: add_before_body uri;

Default —

Context: http, server, location

Adds the text returned as a result of processing a given subrequest before
the response body. An empty string ("") as a parameter cancels addition
inherited from the previous configuration level.

add after body

Syntax: add_after_body uri;

Default —

Context: http, server, location

Adds the text returned as a result of processing a given subrequest after
the response body. An empty string ("") as a parameter cancels addition
inherited from the previous configuration level.

Nginx, Inc. p.61 of 563

CHAPTER 2. HTTP SERVER MODULES 2.3. MODULE NGX HTTP ADDITION MODULE

addition types

Syntax: addition_types mime-type . . . ;

Default text/html

Context: http, server, location
This directive appeared in version 0.7.9.

Allows adding text in responses with the specified MIME types, in addition
to “text/html”. The special value “*” matches any MIME type (0.8.29).

Nginx, Inc. p.62 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

2.4 Module ngx http api module

2.4.1 Summary . 63
2.4.2 Example Configuration 63
2.4.3 Directives . 64

api . 64
status zone . 65

2.4.4 Compatibility . 65
2.4.5 Endpoints . 66
2.4.6 Response Objects . 90

2.4.1 Summary

The ngx_http_api_module module (1.13.3) provides REST API for
accessing various status information, configuring upstream server groups on-
the-fly, and managing key-value pairs without the need of reconfiguring nginx.

The module supersedes the ngx http status module and ngx http -
upstream conf module modules.

When using the PATCH or POST methods, make sure that the payload does
not exceed the buffer size for reading the client request body, otherwise, the
413 Request Entity Too Large error may be returned.

This module is available as part of our commercial subscription.

2.4.2 Example Configuration

http {
upstream backend {

zone http_backend 64k;

server backend1.example.com weight=5;
server backend2.example.com;

}

proxy_cache_path /data/nginx/cache_backend keys_zone=cache_backend:10m;

server {
server_name backend.example.com;

location / {
proxy_pass http://backend;
proxy_cache cache_backend;

health_check;
}

status_zone server_backend;
}

keyval_zone zone=one:32k state=one.keyval;
keyval $arg_text $text zone=one;

Nginx, Inc. p.63 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

server {
listen 127.0.0.1;

location /api {
api write=on;
allow 127.0.0.1;
deny all;

}
}

}

stream {
upstream backend {

zone stream_backend 64k;

server backend1.example.com:12345 weight=5;
server backend2.example.com:12345;

}

server {
listen 127.0.0.1:12345;
proxy_pass backend;
status_zone server_backend;
health_check;

}
}

All API requests include a supported API version in the URI. Examples of
API requests with this configuration:

http://127.0.0.1/api/9/
http://127.0.0.1/api/9/nginx
http://127.0.0.1/api/9/connections
http://127.0.0.1/api/9/workers
http://127.0.0.1/api/9/http/requests
http://127.0.0.1/api/9/http/server_zones/server_backend
http://127.0.0.1/api/9/http/caches/cache_backend
http://127.0.0.1/api/9/http/upstreams/backend
http://127.0.0.1/api/9/http/upstreams/backend/servers/
http://127.0.0.1/api/9/http/upstreams/backend/servers/1
http://127.0.0.1/api/9/http/keyvals/one?key=arg1
http://127.0.0.1/api/9/stream/
http://127.0.0.1/api/9/stream/server_zones/server_backend
http://127.0.0.1/api/9/stream/upstreams/
http://127.0.0.1/api/9/stream/upstreams/backend
http://127.0.0.1/api/9/stream/upstreams/backend/servers/1

2.4.3 Directives

api

Syntax: api [write=on|off];

Default —

Context: location

Turns on the REST API interface in the surrounding location. Access to
this location should be limited.

The write parameter determines whether the API is read-only or read-
write. By default, the API is read-only.

Nginx, Inc. p.64 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

All API requests should contain a supported API version in the URI. If
the request URI equals the location prefix, the list of supported API versions
is returned. The current API version is “9”.

The optional “fields” argument in the request line specifies which fields
of the requested objects will be output:

http://127.0.0.1/api/9/nginx?fields=version,build

status zone

Syntax: status_zone zone;

Default —

Context: server, location, if in location
This directive appeared in version 1.13.12.

Enables collection of virtual http or stream server status information in the
specified zone. Several servers may share the same zone.

Starting from 1.17.0, status information can be collected per location. The
special value off disables statistics collection in nested location blocks. Note
that the statistics is collected in the context of a location where processing
ends. It may be different from the original location, if an internal redirect
happens during request processing.

2.4.4 Compatibility

• The /license data were added in version 9 (1.27.2).

• The /workers/ data were added in version 9.

• Detailed failure counters were added to SSL statistics in version 8
(1.23.2).

• The ssl data for each HTTP upstream, server zone, and stream
upstream, server zone, were added in version 8 (1.21.6).

• The codes data in responses for each HTTP upstream, server zone,
and location zone were added in version 7.

• The /stream/limit conns/ data were added in version 6.

• The /http/limit conns/ data were added in version 6.

• The /http/limit reqs/ data were added in version 6.

• The “expire” parameter of a key-value pair can be set or changed since
version 5.

• The /resolvers/ data were added in version 5.

• The /http/location zones/ data were added in version 5.

Nginx, Inc. p.65 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

• The path and method fields of nginx error object were removed in
version 4. These fields continue to exist in earlier api versions, but show
an empty value.

• The /stream/zone sync/ data were added in version 3.

• The drain parameter was added in version 2.

• The /stream/keyvals/ data were added in version 2.

2.4.5 Endpoints

/
Supported methods:

• GET - Return list of root endpoints

Returns a list of root endpoints.

Possible responses:

– 200 - Success, returns an array of strings

– 404 - Unknown version (UnknownVersion), returns Error

/nginx
Supported methods:

• GET - Return status of nginx running instance

Returns nginx version, build name, address, number of configuration
reloads, IDs of master and worker processes.

Request parameters:

fields (string, optional)
Limits which fields of nginx running instance will be output.

Possible responses:

– 200 - Success, returns nginx

– 404 - Unknown version (UnknownVersion), returns Error

/processes
Supported methods:

• GET - Return nginx processes status

Returns the number of abnormally terminated and respawned child
processes.

Possible responses:

– 200 - Success, returns Processes

– 404 - Unknown version (UnknownVersion), returns Error

Nginx, Inc. p.66 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

DELETE - Reset nginx processes statistics

Resets counters of abnormally terminated and respawned child
processes.

Possible responses:

• – 204 - Success

– 404 - Unknown version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/connections
Supported methods:

• GET - Return client connections statistics

Returns statistics of client connections.

Request parameters:

fields (string, optional)
Limits which fields of the connections statistics will be output.

Possible responses:

– 200 - Success, returns Connections

– 404 - Unknown version (UnknownVersion), returns Error

DELETE - Reset client connections statistics

Resets statistics of accepted and dropped client connections.

Possible responses:

• – 204 - Success

– 404 - Unknown version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/slabs/
Supported methods:

• GET - Return status of all slabs

Returns status of slabs for each shared memory zone with slab
allocator.

Request parameters:

fields (string, optional)
Limits which fields of slab zones will be output. If the“fields”
value is empty, then only zone names will be output.

Possible responses:

– 200 - Success, returns a collection of ”Shared memory zone with
slab allocator” objects for all slabs

– 404 - Unknown version (UnknownVersion), returns Error

/slabs/{slabZoneName}
Parameters common for all methods:

Nginx, Inc. p.67 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

slabZoneName (string, required)
The name of the shared memory zone with slab allocator.

Supported methods:

• GET - Return status of a slab

Returns status of slabs for a particular shared memory zone with
slab allocator.

Request parameters:

fields (string, optional)
Limits which fields of the slab zone will be output.

Possible responses:

– 200 - Success, returns Shared memory zone with slab allocator

– 404 - Slab not found (SlabNotFound), unknown version
(UnknownVersion), returns Error

DELETE - Reset slab statistics

Resets the “reqs” and “fails” metrics for each memory slot.

Possible responses:

• – 204 - Success

– 404 - Slab not found (SlabNotFound), unknown version
(UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/http/
Supported methods:

• GET - Return list of HTTP-related endpoints

Returns a list of first level HTTP endpoints.

Possible responses:

– 200 - Success, returns an array of strings

– 404 - Unknown version (UnknownVersion), returns Error

/http/requests
Supported methods:

• GET - Return HTTP requests statistics

Returns status of client HTTP requests.

Request parameters:

fields (string, optional)
Limits which fields of client HTTP requests statistics will be
output.

Possible responses:

– 200 - Success, returns HTTP Requests

– 404 - Unknown version (UnknownVersion), returns Error

Nginx, Inc. p.68 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

DELETE - Reset HTTP requests statistics

Resets the number of total client HTTP requests.

Possible responses:

• – 204 - Success

– 404 - Unknown version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/http/server_zones/
Supported methods:

• GET - Return status of all HTTP server zones

Returns status information for each HTTP server zone.

Request parameters:

fields (string, optional)
Limits which fields of server zones will be output. If the
“fields” value is empty, then only server zone names will be
output.

Possible responses:

– 200 - Success, returns a collection of ”HTTP Server Zone”
objects for all HTTP server zones

– 404 - Unknown version (UnknownVersion), returns Error

/http/server_zones/{httpServerZoneName}
Parameters common for all methods:

httpServerZoneName (string, required)
The name of an HTTP server zone.

Supported methods:

• GET - Return status of an HTTP server zone

Returns status of a particular HTTP server zone.

Request parameters:

fields (string, optional)
Limits which fields of the server zone will be output.

Possible responses:

– 200 - Success, returns HTTP Server Zone

– 404 - Server zone not found (ServerZoneNotFound),
unknown version (UnknownVersion), returns Error

DELETE - Reset statistics for an HTTP server zone

Resets statistics of accepted and discarded requests, responses,
received and sent bytes, counters of SSL handshakes and session
reuses in a particular HTTP server zone.

Possible responses:

• – 204 - Success

Nginx, Inc. p.69 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

– 404 - Server zone not found (ServerZoneNotFound),
unknown version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/http/location_zones/
Supported methods:

• GET - Return status of all HTTP location zones

Returns status information for each HTTP location zone.

Request parameters:

fields (string, optional)
Limits which fields of location zones will be output. If the
“fields” value is empty, then only zone names will be output.

Possible responses:

– 200 - Success, returns a collection of ”HTTP Location Zone”
objects for all HTTP location zones

– 404 - Unknown version (UnknownVersion), returns Error

/http/location_zones/{httpLocationZoneName}
Parameters common for all methods:

httpLocationZoneName (string, required)
The name of an HTTP location zone.

Supported methods:

• GET - Return status of an HTTP location zone

Returns status of a particular HTTP location zone.

Request parameters:

fields (string, optional)
Limits which fields of the location zone will be output.

Possible responses:

– 200 - Success, returns HTTP Location Zone

– 404 - Location zone not found (LocationZoneNotFound),
unknown version (UnknownVersion), returns Error

DELETE - Reset statistics for a location zone.

Resets statistics of accepted and discarded requests, responses,
received and sent bytes in a particular location zone.

Possible responses:

• – 204 - Success

– 404 - Location zone not found (LocationZoneNotFound),
unknown version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/http/caches/
Supported methods:

Nginx, Inc. p.70 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

• GET - Return status of all caches

Returns status of each cache configured by proxy cache path and
other “*_cache_path” directives.

Request parameters:

fields (string, optional)
Limits which fields of cache zones will be output. If the
“fields” value is empty, then only names of cache zones will
be output.

Possible responses:

– 200 - Success, returns a collection of ”HTTP Cache” objects for
all HTTP caches

– 404 - Unknown version (UnknownVersion), returns Error

/http/caches/{httpCacheZoneName}
Parameters common for all methods:

httpCacheZoneName (string, required)
The name of the cache zone.

Supported methods:

• GET - Return status of a cache

Returns status of a particular cache.

Request parameters:

fields (string, optional)
Limits which fields of the cache zone will be output.

Possible responses:

– 200 - Success, returns HTTP Cache

– 404 - Cache not found (CacheNotFound), unknown version
(UnknownVersion), returns Error

DELETE - Reset cache statistics

Resets statistics of cache hits/misses in a particular cache zone.

Possible responses:

• – 204 - Success

– 404 - Cache not found (CacheNotFound), unknown version
(UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/http/limit_conns/
Supported methods:

• GET - Return status of all HTTP limit conn zones

Returns status information for each HTTP limit conn zone.

Request parameters:

Nginx, Inc. p.71 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

fields (string, optional)
Limits which fields of limit conn zones will be output. If the
“fields” value is empty, then only zone names will be output.

Possible responses:

– 200 - Success, returns a collection of ”HTTP Connections
Limiting” objects for all HTTP limit conns

– 404 - Unknown version (UnknownVersion), returns Error

/http/limit_conns/{httpLimitConnZoneName}
Parameters common for all methods:

httpLimitConnZoneName (string, required)
The name of a limit conn zone.

Supported methods:

• GET - Return status of an HTTP limit conn zone

Returns status of a particular HTTP limit conn zone.

Request parameters:

fields (string, optional)
Limits which fields of the limit conn zone will be output.

Possible responses:

– 200 - Success, returns HTTP Connections Limiting

– 404 - limit conn not found (LimitConnNotFound), unknown
version (UnknownVersion), returns Error

DELETE - Reset statistics for an HTTP limit conn zone

Resets the connection limiting statistics.

Possible responses:

• – 204 - Success

– 404 - limit conn not found (LimitConnNotFound), unknown
version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/http/limit_reqs/
Supported methods:

• GET - Return status of all HTTP limit req zones

Returns status information for each HTTP limit req zone.

Request parameters:

fields (string, optional)
Limits which fields of limit req zones will be output. If the
“fields” value is empty, then only zone names will be output.

Possible responses:

– 200 - Success, returns a collection of ”HTTP Requests Rate
Limiting” objects for all HTTP limit reqs

Nginx, Inc. p.72 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

– 404 - Unknown version (UnknownVersion), returns Error

/http/limit_reqs/{httpLimitReqZoneName}
Parameters common for all methods:

httpLimitReqZoneName (string, required)
The name of a limit req zone.

Supported methods:

• GET - Return status of an HTTP limit req zone

Returns status of a particular HTTP limit req zone.

Request parameters:

fields (string, optional)
Limits which fields of the limit req zone will be output.

Possible responses:

– 200 - Success, returns HTTP Requests Rate Limiting

– 404 - limit req not found (LimitReqNotFound), unknown
version (UnknownVersion), returns Error

DELETE - Reset statistics for an HTTP limit req zone

Resets the requests limiting statistics.

Possible responses:

• – 204 - Success

– 404 - limit req not found (LimitReqNotFound), unknown
version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/http/upstreams/
Supported methods:

• GET - Return status of all HTTP upstream server groups

Returns status of each HTTP upstream server group and its servers.

Request parameters:

fields (string, optional)
Limits which fields of upstream server groups will be output. If
the “fields” value is empty, only names of upstreams will be
output.

Possible responses:

– 200 - Success, returns a collection of ”HTTP Upstream” objects
for all HTTP upstreams

– 404 - Unknown version (UnknownVersion), returns Error

/http/upstreams/{httpUpstreamName}/
Parameters common for all methods:

httpUpstreamName (string, required)
The name of an HTTP upstream server group.

Nginx, Inc. p.73 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

Supported methods:

• GET - Return status of an HTTP upstream server group

Returns status of a particular HTTP upstream server group and its
servers.

Request parameters:

fields (string, optional)
Limits which fields of the upstream server group will be output.

Possible responses:

– 200 - Success, returns HTTP Upstream

– 400 - Upstream is static (UpstreamStatic), returns Error

– 404 - Unknown version (UnknownVersion), upstream not
found (UpstreamNotFound), returns Error

DELETE - Reset statistics of an HTTP upstream server group

Resets the statistics for each upstream server in an upstream server
group and queue statistics.

Possible responses:

• – 204 - Success

– 400 - Upstream is static (UpstreamStatic), returns Error

– 404 - Unknown version (UnknownVersion), upstream not
found (UpstreamNotFound), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/http/upstreams/{httpUpstreamName}/servers/
Parameters common for all methods:

httpUpstreamName (string, required)
The name of an upstream server group.

Supported methods:

• GET - Return configuration of all servers in an HTTP upstream
server group

Returns configuration of each server in a particular HTTP upstream
server group.

Possible responses:

– 200 - Success, returns an array of HTTP Upstream Servers

– 400 - Upstream is static (UpstreamStatic), returns Error

– 404 - Unknown version (UnknownVersion), upstream not
found (UpstreamNotFound), returns Error

POST - Add a server to an HTTP upstream server group

Adds a new server to an HTTP upstream server group. Server
parameters are specified in the JSON format.

Request parameters:

Nginx, Inc. p.74 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

• postHttpUpstreamServer (HTTP Upstream Server, re-
quired)
Address of a new server and other optional parameters in
the JSON format. The “ID”, “backup”, and “service”
parameters cannot be changed.

Possible responses:

– 201 - Created, returns HTTP Upstream Server

– 400 - Upstream is static (UpstreamStatic), invalid
“parameter” value (UpstreamConfFormatError), missing
“server” argument (UpstreamConfFormatError), un-
known parameter “name” (UpstreamConfFormatError),
nested object or list (UpstreamConfFormatError),
“error” while parsing (UpstreamBadAddress),
service upstream “host” may not have port
(UpstreamBadAddress), service upstream “host” re-
quires domain name (UpstreamBadAddress), invalid
“weight” (UpstreamBadWeight), invalid “max_-
conns” (UpstreamBadMaxConns), invalid “max_fails”
(UpstreamBadMaxFails), invalid “fail_timeout”
(UpstreamBadFailTimeout), invalid “slow_start”
(UpstreamBadSlowStart), reading request body failed
BodyReadError), route is too long (UpstreamBadRoute),
“service” is empty (UpstreamBadService), no resolver
defined to resolve (UpstreamConfNoResolver), upstream
“name” has no backup (UpstreamNoBackup), upstream
“name” memory exhausted (UpstreamOutOfMemory),
returns Error

– 404 - Unknown version (UnknownVersion), upstream not
found (UpstreamNotFound), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

– 409 - Entry exists (EntryExists), returns Error

– 415 - JSON error (JsonError), returns Error

/http/upstreams/{httpUpstreamName}/servers/
{httpUpstreamServerId}
Parameters common for all methods:

httpUpstreamName (string, required)
The name of the upstream server group.

httpUpstreamServerId (string, required)
The ID of the server.

Supported methods:

• GET - Return configuration of a server in an HTTP upstream server
group

Returns configuration of a particular server in the HTTP upstream
server group.

Nginx, Inc. p.75 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

Possible responses:

– 200 - Success, returns HTTP Upstream Server

– 400 - Upstream is static (UpstreamStatic), invalid server
ID (UpstreamBadServerId), returns Error

– 404 - Server with ID “id” does not exist
(UpstreamServerNotFound), unknown ver-
sion (UnknownVersion), upstream not found
(UpstreamNotFound), returns Error

PATCH - Modify a server in an HTTP upstream server group

Modifies settings of a particular server in an HTTP upstream server
group. Server parameters are specified in the JSON format.

Request parameters:

• patchHttpUpstreamServer (HTTP Upstream Server, re-
quired)
Server parameters, specified in the JSON format. The “ID”,
“backup”, and “service” parameters cannot be changed.

Possible responses:

– 200 - Success, returns HTTP Upstream Server

– 400 - Upstream is static (UpstreamStatic), invalid
“parameter” value (UpstreamConfFormatError), un-
known parameter “name” (UpstreamConfFormatError),
nested object or list (UpstreamConfFormatError),
“error” while parsing (UpstreamBadAddress), in-
valid “server” argument (UpstreamBadAddress),
invalid server ID (UpstreamBadServerId), invalid
“weight” (UpstreamBadWeight), invalid “max_-
conns” (UpstreamBadMaxConns), invalid “max_-
fails” (UpstreamBadMaxFails), invalid “fail_-
timeout” (UpstreamBadFailTimeout), invalid
“slow_start” (UpstreamBadSlowStart), read-
ing request body failed BodyReadError), route is
too long (UpstreamBadRoute), “service” is empty
(UpstreamBadService), server “ID” address is immutable
(UpstreamServerImmutable), server “ID” weight is im-
mutable (UpstreamServerWeightImmutable), upstream
“name” memory exhausted (UpstreamOutOfMemory),
returns Error

– 404 - Server with ID “id” does not exist
(UpstreamServerNotFound), unknown ver-
sion (UnknownVersion), upstream not found
(UpstreamNotFound), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

– 415 - JSON error (JsonError), returns Error

Nginx, Inc. p.76 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

DELETE - Remove a server from an HTTP upstream server group

Removes a server from an HTTP upstream server group.

Possible responses:

• – 200 - Success, returns an array of HTTP Upstream Servers

– 400 - Upstream is static (UpstreamStatic), invalid server
ID (UpstreamBadServerId), server “id” not removable
(UpstreamServerImmutable), returns Error

– 404 - Server with ID “id” does not exist
(UpstreamServerNotFound), unknown ver-
sion (UnknownVersion), upstream not found
(UpstreamNotFound), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/http/keyvals/
Supported methods:

• GET - Return key-value pairs from all HTTP keyval zones

Returns key-value pairs for each HTTP keyval shared memory zone.

Request parameters:

fields (string, optional)
If the “fields” value is empty, then only HTTP keyval zone
names will be output.

Possible responses:

– 200 - Success, returns a collection of ”HTTP Keyval Shared
Memory Zone” objects for all HTTP keyvals

– 404 - Unknown version (UnknownVersion), returns Error

/http/keyvals/{httpKeyvalZoneName}
Parameters common for all methods:

httpKeyvalZoneName (string, required)
The name of an HTTP keyval shared memory zone.

Supported methods:

• GET - Return key-value pairs from an HTTP keyval zone

Returns key-value pairs stored in a particular HTTP keyval shared
memory zone.

Request parameters:

key (string, optional)
Get a particular key-value pair from the HTTP keyval zone.

Possible responses:

– 200 - Success, returns HTTP Keyval Shared Memory Zone

– 404 - Keyval not found (KeyvalNotFound), keyval
key not found (KeyvalKeyNotFound), unknown version
(UnknownVersion), returns Error

Nginx, Inc. p.77 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

POST - Add a key-value pair to the HTTP keyval zone

Adds a new key-value pair to the HTTP keyval shared memory
zone. Several key-value pairs can be entered if the HTTP keyval
shared memory zone is empty.

Request parameters:

• Key-value (HTTP Keyval Shared Memory Zone, required)
A key-value pair is specified in the JSON format. Several key-
value pairs can be entered if the HTTP keyval shared memory
zone is empty. Expiration time in milliseconds can be specified
for a key-value pair with the expire parameter which overrides
the timeout parameter of the keyval zone directive.

Possible responses:

– 201 - Created

– 400 - Invalid JSON (KeyvalFormatError), invalid
key format (KeyvalFormatError), key required
(KeyvalFormatError), keyval timeout is not enabled
(KeyvalFormatError), only one key can be added
(KeyvalFormatError), reading request body failed
BodyReadError), returns Error

– 404 - Keyval not found (KeyvalNotFound), unknown version
(UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

– 409 - Entry exists (EntryExists), key already exists
(KeyvalKeyExists), returns Error

– 413 - Request Entity Too Large, returns Error

– 415 - JSON error (JsonError), returns Error

PATCH - Modify a key-value or delete a key

Changes the value of the selected key in the key-value pair, deletes
a key by setting the key value to null, changes expiration time
of a key-value pair. If synchronization of keyval zones in a cluster
is enabled, deletes a key only on a target cluster node. Expiration
time in milliseconds can be specified for a key-value pair with the
expire parameter which overrides the timeout parameter of the
keyval zone directive.

Request parameters:

• httpKeyvalZoneKeyValue (HTTP Keyval Shared Memory
Zone, required)
A new value for the key is specified in the JSON format.

Possible responses:

– 204 - Success

– 400 - Invalid JSON (KeyvalFormatError), key re-
quired (KeyvalFormatError), keyval timeout is not en-
abled (KeyvalFormatError), only one key can be up-

Nginx, Inc. p.78 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

dated (KeyvalFormatError), reading request body failed
BodyReadError), returns Error

– 404 - Keyval not found (KeyvalNotFound), keyval
key not found (KeyvalKeyNotFound), unknown version
(UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

– 413 - Request Entity Too Large, returns Error

– 415 - JSON error (JsonError), returns Error

DELETE - Empty the HTTP keyval zone

Deletes all key-value pairs from the HTTP keyval shared memory
zone. If synchronization of keyval zones in a cluster is enabled,
empties the keyval zone only on a target cluster node.

Possible responses:

• – 204 - Success

– 404 - Keyval not found (KeyvalNotFound), unknown version
(UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/stream/
Supported methods:

• GET - Return list of stream-related endpoints

Returns a list of first level stream endpoints.

Possible responses:

– 200 - Success, returns an array of strings

– 404 - Unknown version (UnknownVersion), returns Error

/stream/server_zones/
Supported methods:

• GET - Return status of all stream server zones

Returns status information for each stream server zone.

Request parameters:

fields (string, optional)
Limits which fields of server zones will be output. If the
“fields” value is empty, then only server zone names will be
output.

Possible responses:

– 200 - Success, returns a collection of ”Stream Server Zone”
objects for all stream server zones

– 404 - Unknown version (UnknownVersion), returns Error

/stream/server_zones/{streamServerZoneName}
Parameters common for all methods:

Nginx, Inc. p.79 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

streamServerZoneName (string, required)
The name of a stream server zone.

Supported methods:

• GET - Return status of a stream server zone

Returns status of a particular stream server zone.

Request parameters:

fields (string, optional)
Limits which fields of the server zone will be output.

Possible responses:

– 200 - Success, returns Stream Server Zone

– 404 - Server zone not found (ServerZoneNotFound),
unknown version (UnknownVersion), returns Error

DELETE - Reset statistics for a stream server zone

Resets statistics of accepted and discarded connections, sessions,
received and sent bytes, counters of SSL handshakes and session
reuses in a particular stream server zone.

Possible responses:

• – 204 - Success

– 404 - Server zone not found (ServerZoneNotFound),
unknown version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/stream/limit_conns/
Supported methods:

• GET - Return status of all stream limit conn zones

Returns status information for each stream limit conn zone.

Request parameters:

fields (string, optional)
Limits which fields of limit conn zones will be output. If the
“fields” value is empty, then only zone names will be output.

Possible responses:

– 200 - Success, returns a collection of ”Stream Connections
Limiting” objects for all stream limit conns

– 404 - Unknown version (UnknownVersion), returns Error

/stream/limit_conns/{streamLimitConnZoneName}
Parameters common for all methods:

streamLimitConnZoneName (string, required)
The name of a limit conn zone.

Supported methods:

Nginx, Inc. p.80 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

• GET - Return status of an stream limit conn zone

Returns status of a particular stream limit conn zone.

Request parameters:

fields (string, optional)
Limits which fields of the limit conn zone will be output.

Possible responses:

– 200 - Success, returns Stream Connections Limiting

– 404 - limit conn not found (LimitConnNotFound), unknown
version (UnknownVersion), returns Error

DELETE - Reset statistics for a stream limit conn zone

Resets the connection limiting statistics.

Possible responses:

• – 204 - Success

– 404 - limit conn not found (LimitConnNotFound), unknown
version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/stream/upstreams/
Supported methods:

• GET - Return status of all stream upstream server groups

Returns status of each stream upstream server group and its servers.

Request parameters:

fields (string, optional)
Limits which fields of upstream server groups will be output. If
the “fields” value is empty, only names of upstreams will be
output.

Possible responses:

– 200 - Success, returns a collection of ”Stream Upstream”objects
for all stream upstreams

– 404 - Unknown version (UnknownVersion), returns Error

/stream/upstreams/{streamUpstreamName}/
Parameters common for all methods:

streamUpstreamName (string, required)
The name of a stream upstream server group.

Supported methods:

• GET - Return status of a stream upstream server group

Returns status of a particular stream upstream server group and its
servers.

Request parameters:

Nginx, Inc. p.81 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

fields (string, optional)
Limits which fields of the upstream server group will be output.

Possible responses:

– 200 - Success, returns Stream Upstream

– 400 - Upstream is static (UpstreamStatic), returns Error

– 404 - Unknown version (UnknownVersion), upstream not
found (UpstreamNotFound), returns Error

DELETE - Reset statistics of a stream upstream server group

Resets the statistics for each upstream server in an upstream server
group.

Possible responses:

• – 204 - Success

– 400 - Upstream is static (UpstreamStatic), returns Error

– 404 - Unknown version (UnknownVersion), upstream not
found (UpstreamNotFound), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/stream/upstreams/{streamUpstreamName}/servers/
Parameters common for all methods:

streamUpstreamName (string, required)
The name of an upstream server group.

Supported methods:

• GET - Return configuration of all servers in a stream upstream server
group

Returns configuration of each server in a particular stream upstream
server group.

Possible responses:

– 200 - Success, returns an array of Stream Upstream Servers

– 400 - Upstream is static (UpstreamStatic), returns Error

– 404 - Unknown version (UnknownVersion), upstream not
found (UpstreamNotFound), returns Error

POST - Add a server to a stream upstream server group

Adds a new server to a stream upstream server group. Server
parameters are specified in the JSON format.

Request parameters:

• postStreamUpstreamServer (Stream Upstream Server, re-
quired)
Address of a new server and other optional parameters in
the JSON format. The “ID”, “backup”, and “service”
parameters cannot be changed.

Possible responses:

Nginx, Inc. p.82 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

– 201 - Created, returns Stream Upstream Server

– 400 - Upstream is static (UpstreamStatic), invalid
“parameter” value (UpstreamConfFormatError), missing
“server” argument (UpstreamConfFormatError), un-
known parameter “name” (UpstreamConfFormatError),
nested object or list (UpstreamConfFormatError),
“error” while parsing (UpstreamBadAddress),
no port in server “host” (UpstreamBadAddress),
service upstream “host” may not have port
(UpstreamBadAddress), service upstream “host” re-
quires domain name (UpstreamBadAddress), invalid
“weight” (UpstreamBadWeight), invalid “max_-
conns” (UpstreamBadMaxConns), invalid “max_-
fails” (UpstreamBadMaxFails), invalid “fail_-
timeout” (UpstreamBadFailTimeout), invalid “slow_-
start” (UpstreamBadSlowStart), “service” is empty
(UpstreamBadService), no resolver defined to resolve
(UpstreamConfNoResolver), upstream “name” has no
backup (UpstreamNoBackup), upstream “name” memory
exhausted (UpstreamOutOfMemory), reading request body
failed BodyReadError), returns Error

– 404 - Unknown version (UnknownVersion), upstream not
found (UpstreamNotFound), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

– 409 - Entry exists (EntryExists), returns Error

– 415 - JSON error (JsonError), returns Error

/stream/upstreams/{streamUpstreamName}/servers/
{streamUpstreamServerId}
Parameters common for all methods:

streamUpstreamName (string, required)
The name of the upstream server group.

streamUpstreamServerId (string, required)
The ID of the server.

Supported methods:

• GET - Return configuration of a server in a stream upstream server
group

Returns configuration of a particular server in the stream upstream
server group.

Possible responses:

– 200 - Success, returns Stream Upstream Server

– 400 - Upstream is static (UpstreamStatic), invalid server
ID (UpstreamBadServerId), returns Error

Nginx, Inc. p.83 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

– 404 - Unknown version (UnknownVersion), upstream not
found (UpstreamNotFound), server with ID “id” does not
exist (UpstreamServerNotFound), returns Error

PATCH - Modify a server in a stream upstream server group

Modifies settings of a particular server in a stream upstream server
group. Server parameters are specified in the JSON format.

Request parameters:

• patchStreamUpstreamServer (Stream Upstream Server,
required)
Server parameters, specified in the JSON format. The “ID”,
“backup”, and “service” parameters cannot be changed.

Possible responses:

– 200 - Success, returns Stream Upstream Server

– 400 - Upstream is static (UpstreamStatic), invalid
“parameter” value (UpstreamConfFormatError), un-
known parameter “name” (UpstreamConfFormatError),
nested object or list (UpstreamConfFormatError),
“error” while parsing (UpstreamBadAddress), in-
valid “server” argument (UpstreamBadAddress),
no port in server “host” (UpstreamBadAddress),
invalid server ID (UpstreamBadServerId), invalid
“weight” (UpstreamBadWeight), invalid “max_-
conns” (UpstreamBadMaxConns), invalid “max_-
fails” (UpstreamBadMaxFails), invalid “fail_-
timeout” (UpstreamBadFailTimeout), invalid “slow_-
start” (UpstreamBadSlowStart), reading request
body failed BodyReadError), “service” is empty
(UpstreamBadService), server “ID” address is immutable
(UpstreamServerImmutable), server “ID” weight is im-
mutable (UpstreamServerWeightImmutable), upstream
“name” memory exhausted (UpstreamOutOfMemory),
returns Error

– 404 - Server with ID “id” does not exist
(UpstreamServerNotFound), unknown ver-
sion (UnknownVersion), upstream not found
(UpstreamNotFound), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

– 415 - JSON error (JsonError), returns Error

DELETE - Remove a server from a stream upstream server group

Removes a server from a stream server group.

Possible responses:

• – 200 - Success, returns an array of Stream Upstream Servers

Nginx, Inc. p.84 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

– 400 - Upstream is static (UpstreamStatic), invalid server
ID (UpstreamBadServerId), server “id” not removable
(UpstreamServerImmutable), returns Error

– 404 - Server with ID “id” does not exist
(UpstreamServerNotFound), unknown ver-
sion (UnknownVersion), upstream not found
(UpstreamNotFound), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/stream/keyvals/
Supported methods:

• GET - Return key-value pairs from all stream keyval zones

Returns key-value pairs for each stream keyval shared memory zone.

Request parameters:

fields (string, optional)
If the “fields” value is empty, then only stream keyval zone
names will be output.

Possible responses:

– 200 - Success, returns a collection of ”Stream Keyval Shared
Memory Zone” objects for all stream keyvals

– 404 - Unknown version (UnknownVersion), returns Error

/stream/keyvals/{streamKeyvalZoneName}
Parameters common for all methods:

streamKeyvalZoneName (string, required)
The name of a stream keyval shared memory zone.

Supported methods:

• GET - Return key-value pairs from a stream keyval zone

Returns key-value pairs stored in a particular stream keyval shared
memory zone.

Request parameters:

key (string, optional)
Get a particular key-value pair from the stream keyval zone.

Possible responses:

– 200 - Success, returns Stream Keyval Shared Memory Zone

– 404 - Keyval not found (KeyvalNotFound), keyval
key not found (KeyvalKeyNotFound), unknown version
(UnknownVersion), returns Error

POST - Add a key-value pair to the stream keyval zone

Adds a new key-value pair to the stream keyval shared memory
zone. Several key-value pairs can be entered if the stream keyval
shared memory zone is empty.

Nginx, Inc. p.85 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

Request parameters:

• Key-value (Stream Keyval Shared Memory Zone, required)
A key-value pair is specified in the JSON format. Several key-
value pairs can be entered if the stream keyval shared memory
zone is empty. Expiration time in milliseconds can be specified
for a key-value pair with the expire parameter which overrides
the timeout parameter of the keyval zone directive.

Possible responses:

– 201 - Created

– 400 - Invalid JSON (KeyvalFormatError), invalid
key format (KeyvalFormatError), key required
(KeyvalFormatError), keyval timeout is not enabled
(KeyvalFormatError), only one key can be added
(KeyvalFormatError), reading request body failed
BodyReadError), returns Error

– 404 - Keyval not found (KeyvalNotFound), unknown version
(UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

– 409 - Entry exists (EntryExists), key already exists
(KeyvalKeyExists), returns Error

– 413 - Request Entity Too Large, returns Error

– 415 - JSON error (JsonError), returns Error

PATCH - Modify a key-value or delete a key

Changes the value of the selected key in the key-value pair, deletes
a key by setting the key value to null, changes expiration time
of a key-value pair. If synchronization of keyval zones in a cluster
is enabled, deletes a key only on a target cluster node. Expiration
time is specified in milliseconds with the expire parameter which
overrides the timeout parameter of the keyval zone directive.

Request parameters:

• streamKeyvalZoneKeyValue (Stream Keyval Shared Memory
Zone, required)
A new value for the key is specified in the JSON format.

Possible responses:

– 204 - Success

– 400 - Invalid JSON (KeyvalFormatError), key re-
quired (KeyvalFormatError), keyval timeout is not en-
abled (KeyvalFormatError), only one key can be up-
dated (KeyvalFormatError), reading request body failed
BodyReadError), returns Error

– 404 - Keyval not found (KeyvalNotFound), keyval
key not found (KeyvalKeyNotFound), unknown version
(UnknownVersion), returns Error

Nginx, Inc. p.86 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

– 405 - Method disabled (MethodDisabled), returns Error

– 413 - Request Entity Too Large, returns Error

– 415 - JSON error (JsonError), returns Error

DELETE - Empty the stream keyval zone

Deletes all key-value pairs from the stream keyval shared memory
zone. If synchronization of keyval zones in a cluster is enabled,
empties the keyval zone only on a target cluster node.

Possible responses:

• – 204 - Success

– 404 - Keyval not found (KeyvalNotFound), unknown version
(UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/stream/zone_sync/
Supported methods:

• GET - Return sync status of a node

Returns synchronization status of a cluster node.

Possible responses:

– 200 - Success, returns Stream Zone Sync Node

– 404 - Unknown version (UnknownVersion), returns Error

/resolvers/
Supported methods:

• GET - Return status for all resolver zones

Returns status information for each resolver zone.

Request parameters:

fields (string, optional)
Limits which fields of resolvers statistics will be output.

Possible responses:

– 200 - Success, returns a collection of ”Resolver Zone” objects
for all resolvers

– 404 - Unknown version (UnknownVersion), returns Error

/resolvers/{resolverZoneName}
Parameters common for all methods:

resolverZoneName (string, required)
The name of a resolver zone.

Supported methods:

• GET - Return statistics of a resolver zone

Returns statistics stored in a particular resolver zone.

Request parameters:

Nginx, Inc. p.87 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

fields (string, optional)
Limits which fields of the resolver zone will be output (requests,
responses, or both).

Possible responses:

– 200 - Success, returns Resolver Zone

– 404 - Resolver zone not found (ResolverZoneNotFound),
unknown version (UnknownVersion), returns Error

DELETE - Reset statistics for a resolver zone.

Resets statistics in a particular resolver zone.

Possible responses:

• – 204 - Success

– 404 - Resolver zone not found (ResolverZoneNotFound),
unknown version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/ssl
Supported methods:

• GET - Return SSL statistics

Returns SSL statistics.

Request parameters:

fields (string, optional)
Limits which fields of SSL statistics will be output.

Possible responses:

– 200 - Success, returns SSL

– 404 - Unknown version (UnknownVersion), returns Error

DELETE - Reset SSL statistics

Resets counters of SSL handshakes and session reuses.

Possible responses:

• – 204 - Success

– 404 - Unknown version (UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/license
Supported methods:

• GET - Return license info

Returns license information and usage reporting status for NGINX
Plus instance.

Possible responses:

– 200 - Success, returns License

– 404 - Unknown version (UnknownVersion), returns Error

Nginx, Inc. p.88 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

– 405 - Method disabled (MethodDisabled), returns Error

/workers/
Supported methods:

• GET - Return statistics for all worker processes

Returns statistics for all worker processes such as accepted, dropped,
active, idle connections, total and current requests.

Request parameters:

fields (string, optional)
Limits which fields of worker process statistics will be output.

Possible responses:

– 200 - Success, returns a collection of ”Worker process” objects
for all /workers

– 404 - Worker not found (WorkerNotFound), unknown version
(UnknownVersion), returns Error

DELETE - Reset statistics for all worker processes.

Resets statistics for all worker processes such as accepted, dropped,
active, idle connections, total and current requests.

Possible responses:

• – 204 - Success

– 404 - Worker not found (WorkerNotFound), unknown version
(UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

/workers/{workerId}
Parameters common for all methods:

workerId (string, required)
The ID of the worker process.

Supported methods:

• GET - Return status of a worker process

Returns status of a particular worker process.

Request parameters:

fields (string, optional)
Limits which fields of worker process statistics will be output.

Possible responses:

– 200 - Success, returns Worker process

– 404 - Worker not found (WorkerNotFound), unknown version
(UnknownVersion), returns Error

Nginx, Inc. p.89 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

DELETE - Reset statistics for a worker process.

Resets statistics of accepted, dropped, active, idle connections, as
well as total and current requests.

Possible responses:

• – 204 - Success

– 404 - Worker not found (WorkerNotFound), unknown version
(UnknownVersion), returns Error

– 405 - Method disabled (MethodDisabled), returns Error

2.4.6 Response Objects

• nginx:

General information about nginx:

version (string)
Version of nginx.

build (string)
Name of nginx build.

address (string)
The address of the server that accepted status request.

generation (integer)
The total number of configuration reloads.

load_timestamp (string)
Time of the last reload of configuration, in the ISO 8601 format
with millisecond resolution.

timestamp (string)
Current time in the ISO 8601 format with millisecond resolution.

pid (integer)
The ID of the worker process that handled status request.

ppid (integer)
The ID of the master process that started the worker process.

Example:

{
"nginx" : {

"version" : "1.21.6",
"build" : "nginx-plus-r27",
"address" : "206.251.255.64",
"generation" : 6,
"load_timestamp" : "2022-06-28T11:15:44.467Z",
"timestamp" : "2022-06-28T09:26:07.305Z",
"pid" : 32212,
"ppid" : 32210

}
}

• Processes:

Nginx, Inc. p.90 of 563

https://nginx.org/en/docs/control.html#reconfiguration

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

respawned (integer)
The total number of abnormally terminated and respawned child
processes.

Example:

{
"respawned" : 0

}

• Connections:

The number of accepted, dropped, active, and idle connections.

accepted (integer)
The total number of accepted client connections.

dropped (integer)
The total number of dropped client connections.

active (integer)
The current number of active client connections.

idle (integer)
The current number of idle client connections.

Example:

{
"accepted" : 4968119,
"dropped" : 0,
"active" : 5,
"idle" : 117

}

• SSL:

handshakes (integer)
The total number of successful SSL handshakes.

handshakes_failed (integer)
The total number of failed SSL handshakes.

session_reuses (integer)
The total number of session reuses during SSL handshake.

no_common_protocol (integer)
The number of SSL handshakes failed because of no common
protocol.

no_common_cipher (integer)
The number of SSL handshakes failed because of no shared cipher.

handshake_timeout (integer)
The number of SSL handshakes failed because of a timeout.

Nginx, Inc. p.91 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

peer_rejected_cert (integer)
The number of failed SSL handshakes when nginx presented the
certificate to the client but it was rejected with a corresponding
alert message.

verify_failures
SSL certificate verification errors

no_cert (integer)
A client did not provide the required certificate.

expired_cert (integer)
An expired or not yet valid certificate was presented by a client.

revoked_cert (integer)
A revoked certificate was presented by a client.

hostname_mismatch (integer)
Server’s certificate doesn’t match the hostname.

other (integer)
Other SSL certificate verification errors.

Example:

{
"handshakes" : 79572,
"handshakes_failed" : 21025,
"session_reuses" : 15762,
"no_common_protocol" : 4,
"no_common_cipher" : 2,
"handshake_timeout" : 0,
"peer_rejected_cert" : 0,
"verify_failures" : {

"no_cert" : 0,
"expired_cert" : 2,
"revoked_cert" : 1,
"hostname_mismatch" : 2,
"other" : 1

}
}

• Shared memory zone with slab allocator:

Shared memory zone with slab allocator

pages
The number of free and used memory pages.

used (integer)
The current number of used memory pages.

free (integer)
The current number of free memory pages.

slots
Status data for memory slots (8, 16, 32, 64, 128, etc.)
A collection of ”Memory Slot” objects

Example:

Nginx, Inc. p.92 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

{
"pages" : {

"used" : 1143,
"free" : 2928

},
"slots" : {

"8" : {
"used" : 0,
"free" : 0,
"reqs" : 0,
"fails" : 0

},
"16" : {
"used" : 0,
"free" : 0,
"reqs" : 0,
"fails" : 0

},
"32" : {
"used" : 0,
"free" : 0,
"reqs" : 0,
"fails" : 0

},
"64" : {
"used" : 1,
"free" : 63,
"reqs" : 1,
"fails" : 0

},
"128" : {
"used" : 0,
"free" : 0,
"reqs" : 0,
"fails" : 0

},
"256" : {
"used" : 18078,
"free" : 178,
"reqs" : 1635736,
"fails" : 0

}
}

}

• Memory Slot:

used (integer)
The current number of used memory slots.

free (integer)
The current number of free memory slots.

reqs (integer)
The total number of attempts to allocate memory of specified size.

fails (integer)
The number of unsuccessful attempts to allocate memory of
specified size.

HTTP Requests:

• total (integer)

Nginx, Inc. p.93 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

The total number of client requests.

current (integer)
The current number of client requests.

Example:

{
"total" : 10624511,
"current" : 4

}

• HTTP Server Zone:

processing (integer)
The number of client requests that are currently being processed.

requests (integer)
The total number of client requests received from clients.

responses
The total number of responses sent to clients, the number of
responses with status codes“1xx”, “2xx”, “3xx”, “4xx”, and“5xx”,
and the number of responses per each status code.

1xx (integer)
The number of responses with “1xx” status codes.

2xx (integer)
The number of responses with “2xx” status codes.

3xx (integer)
The number of responses with “3xx” status codes.

4xx (integer)
The number of responses with “4xx” status codes.

5xx (integer)
The number of responses with “5xx” status codes.

codes
The number of responses per each status code.

codeNumber (integer)
The number of responses with this particular status code.

total (integer)
The total number of responses sent to clients.

discarded (integer)
The total number of requests completed without sending a response.

received (integer)
The total number of bytes received from clients.

sent (integer)
The total number of bytes sent to clients.

ssl

handshakes (integer)
The total number of successful SSL handshakes.

Nginx, Inc. p.94 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

handshakes_failed (integer)
The total number of failed SSL handshakes.

session_reuses (integer)
The total number of session reuses during SSL handshake.

no_common_protocol (integer)
The number of SSL handshakes failed because of no common
protocol.

no_common_cipher (integer)
The number of SSL handshakes failed because of no shared
cipher.

handshake_timeout (integer)
The number of SSL handshakes failed because of a timeout.

peer_rejected_cert (integer)
The number of failed SSL handshakes when nginx presented the
certificate to the client but it was rejected with a corresponding
alert message.

verify_failures
SSL certificate verification errors

no_cert (integer)
A client did not provide the required certificate.

expired_cert (integer)
An expired or not yet valid certificate was presented by a
client.

revoked_cert (integer)
A revoked certificate was presented by a client.

other (integer)
Other SSL certificate verification errors.

Example:

{
"processing" : 1,
"requests" : 706690,
"responses" : {

"1xx" : 0,
"2xx" : 699482,
"3xx" : 4522,
"4xx" : 907,
"5xx" : 266,
"codes" : {
"200" : 699482,
"301" : 4522,
"404" : 907,
"503" : 266

},
"total" : 705177

},
"discarded" : 1513,
"received" : 172711587,
"sent" : 19415530115,
"ssl" : {

"handshakes" : 104303,
"handshakes_failed" : 1421,
"session_reuses" : 54645,

Nginx, Inc. p.95 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

"no_common_protocol" : 4,
"no_common_cipher" : 2,
"handshake_timeout" : 0,
"peer_rejected_cert" : 0,
"verify_failures" : {
"no_cert" : 0,
"expired_cert" : 2,
"revoked_cert" : 1,
"other" : 1

}
}

}

• HTTP Location Zone:

requests (integer)
The total number of client requests received from clients.

responses
The total number of responses sent to clients, the number of
responses with status codes“1xx”, “2xx”, “3xx”, “4xx”, and“5xx”,
and the number of responses per each status code.

1xx (integer)
The number of responses with “1xx” status codes.

2xx (integer)
The number of responses with “2xx” status codes.

3xx (integer)
The number of responses with “3xx” status codes.

4xx (integer)
The number of responses with “4xx” status codes.

5xx (integer)
The number of responses with “5xx” status codes.

codes
The number of responses per each status code.

codeNumber (integer)
The number of responses with this particular status code.

total (integer)
The total number of responses sent to clients.

discarded (integer)
The total number of requests completed without sending a response.

received (integer)
The total number of bytes received from clients.

sent (integer)
The total number of bytes sent to clients.

Example:

{
"requests" : 706690,
"responses" : {

"1xx" : 0,

Nginx, Inc. p.96 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

"2xx" : 699482,
"3xx" : 4522,
"4xx" : 907,
"5xx" : 266,
"codes" : {
"200" : 112674,
"301" : 4522,
"404" : 2504,
"503" : 266

},
"total" : 705177

},
"discarded" : 1513,
"received" : 172711587,
"sent" : 19415530115

}

• HTTP Cache:

size (integer)
The current size of the cache.

max_size (integer)
The limit on the maximum size of the cache specified in the
configuration.

cold (boolean)
A boolean value indicating whether the “cache loader” process is
still loading data from disk into the cache.

hit

responses (integer)
The total number of valid responses read from the cache.

bytes (integer)
The total number of bytes read from the cache.

stale

responses (integer)
The total number of expired responses read from the cache
(see proxy cache use stale and other “*_cache_use_stale”
directives).

bytes (integer)
The total number of bytes read from the cache.

updating

responses (integer)
The total number of expired responses read from the cache while
responses were being updated (see proxy cache use stale and
other “*_cache_use_stale” directives).

bytes (integer)
The total number of bytes read from the cache.

revalidated

responses (integer)

Nginx, Inc. p.97 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

The total number of expired and revalidated responses read
from the cache (see proxy cache revalidate and other “*_-
cache_revalidate” directives.

bytes (integer)
The total number of bytes read from the cache.

miss

responses (integer)
The total number of responses not found in the cache.

bytes (integer)
The total number of bytes read from the proxied server.

responses_written (integer)
The total number of responses written to the cache.

bytes_written (integer)
The total number of bytes written to the cache.

expired

responses (integer)
The total number of expired responses not taken from the cache.

bytes (integer)
The total number of bytes read from the proxied server.

responses_written (integer)
The total number of responses written to the cache.

bytes_written (integer)
The total number of bytes written to the cache.

bypass

responses (integer)
The total number of responses not looked up in the cache
due to the proxy cache bypass and other “*_cache_bypass”
directives.

bytes (integer)
The total number of bytes read from the proxied server.

responses_written (integer)
The total number of responses written to the cache.

bytes_written (integer)
The total number of bytes written to the cache.

Example:

{
"size" : 530915328,
"max_size" : 536870912,
"cold" : false,
"hit" : {

"responses" : 254032,
"bytes" : 6685627875

},
"stale" : {

"responses" : 0,
"bytes" : 0

Nginx, Inc. p.98 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

},
"updating" : {

"responses" : 0,
"bytes" : 0

},
"revalidated" : {

"responses" : 0,
"bytes" : 0

},
"miss" : {

"responses" : 1619201,
"bytes" : 53841943822

},
"expired" : {

"responses" : 45859,
"bytes" : 1656847080,
"responses_written" : 44992,
"bytes_written" : 1641825173

},
"bypass" : {

"responses" : 200187,
"bytes" : 5510647548,
"responses_written" : 200173,
"bytes_written" : 44992

}
}

• HTTP Connections Limiting:

passed (integer)
The total number of connections that were neither limited nor
accounted as limited.

rejected (integer)
The total number of connections that were rejected.

rejected_dry_run (integer)
The total number of connections accounted as rejected in the dry
run mode.

Example:

{
"passed" : 15,
"rejected" : 0,
"rejected_dry_run" : 2

}

• HTTP Requests Rate Limiting:

passed (integer)
The total number of requests that were neither limited nor
accounted as limited.

delayed (integer)
The total number of requests that were delayed.

rejected (integer)
The total number of requests that were rejected.

Nginx, Inc. p.99 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

delayed_dry_run (integer)
The total number of requests accounted as delayed in the dry run
mode.

rejected_dry_run (integer)
The total number of requests accounted as rejected in the dry run
mode.

Example:

{
"passed" : 15,
"delayed" : 4,
"rejected" : 0,
"delayed_dry_run" : 1,
"rejected_dry_run" : 2

}

• HTTP Upstream:

peers
An array of:

id (integer)
The ID of the server.

server (string)
An address of the server.

service (string)
The service parameter value of the server directive.

name (string)
The name of the server specified in the server directive.

backup (boolean)
A boolean value indicating whether the server is a backup
server.

weight (integer)
Weight of the server.

state (string)
Current state, which may be one of“up”,“draining”,“down”,
“unavail”, “checking”, and “unhealthy”.

active (integer)
The current number of active connections.

ssl

handshakes (integer)
The total number of successful SSL handshakes.

handshakes_failed (integer)
The total number of failed SSL handshakes.

session_reuses (integer)
The total number of session reuses during SSL handshake.

Nginx, Inc. p.100 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

no_common_protocol (integer)
The number of SSL handshakes failed because of no
common protocol.

handshake_timeout (integer)
The number of SSL handshakes failed because of a timeout.

peer_rejected_cert (integer)
The number of failed SSL handshakes when nginx presented
the certificate to the upstream server but it was rejected
with a corresponding alert message.

verify_failures
SSL certificate verification errors

expired_cert (integer)
An expired or not yet valid certificate was presented by
an upstream server.

revoked_cert (integer)
A revoked certificate was presented by an upstream
server.

hostname_mismatch (integer)
Server’s certificate doesn’t match the hostname.

other (integer)
Other SSL certificate verification errors.

max_conns (integer)
The max conns limit for the server.

requests (integer)
The total number of client requests forwarded to this server.

responses

1xx (integer)
The number of responses with “1xx” status codes.

2xx (integer)
The number of responses with “2xx” status codes.

3xx (integer)
The number of responses with “3xx” status codes.

4xx (integer)
The number of responses with “4xx” status codes.

5xx (integer)
The number of responses with “5xx” status codes.

codes
The number of responses per each status code.

codeNumber (integer)
The number of responses with this particular status code.

total (integer)
The total number of responses obtained from this server.

sent (integer)
The total number of bytes sent to this server.

received (integer)

Nginx, Inc. p.101 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

The total number of bytes received from this server.

fails (integer)
The total number of unsuccessful attempts to communicate
with the server.

unavail (integer)
How many times the server became unavailable for client
requests (state “unavail”) due to the number of unsuccessful
attempts reaching the max fails threshold.

health_checks

checks (integer)
The total number of health check requests made.

fails (integer)
The number of failed health checks.

unhealthy (integer)
How many times the server became unhealthy (state
“unhealthy”).

last_passed (boolean)
Boolean indicating if the last health check request was
successful and passed tests.

downtime (integer)
Total time the server was in the “unavail”, “checking”, and
“unhealthy” states.

downstart (string)
The time when the server became “unavail”, “checking”,
or “unhealthy”, in the ISO 8601 format with millisecond
resolution.

selected (string)
The time when the server was last selected to process a request,
in the ISO 8601 format with millisecond resolution.

header_time (integer)
The average time to get the response header from the server.

response_time (integer)
The average time to get the full response from the server.

keepalive (integer)
The current number of idle keepalive connections.

zombies (integer)
The current number of servers removed from the group but still
processing active client requests.

zone (string)
The name of the shared memory zone that keeps the group’s
configuration and run-time state.

queue
For the requests queue, the following data are provided:

size (integer)
The current number of requests in the queue.

Nginx, Inc. p.102 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

max_size (integer)
The maximum number of requests that can be in the queue at
the same time.

overflows (integer)
The total number of requests rejected due to the queue overflow.

Example:

{
"upstream_backend" : {

"peers" : [
{
"id" : 0,
"server" : "10.0.0.1:8088",
"name" : "10.0.0.1:8088",
"backup" : false,
"weight" : 5,
"state" : "up",
"active" : 0,
"ssl" : {

"handshakes" : 620311,
"handshakes_failed" : 3432,
"session_reuses" : 36442,
"no_common_protocol" : 4,
"handshake_timeout" : 0,
"peer_rejected_cert" : 0,
"verify_failures" : {

"expired_cert" : 2,
"revoked_cert" : 1,
"hostname_mismatch" : 2,
"other" : 1

}
},
"max_conns" : 20,
"requests" : 667231,
"header_time" : 20,
"response_time" : 36,
"responses" : {

"1xx" : 0,
"2xx" : 666310,
"3xx" : 0,
"4xx" : 915,
"5xx" : 6,
"codes" : {

"200" : 666310,
"404" : 915,
"503" : 6

},
"total" : 667231

},
"sent" : 251946292,
"received" : 19222475454,
"fails" : 0,
"unavail" : 0,
"health_checks" : {

"checks" : 26214,
"fails" : 0,
"unhealthy" : 0,
"last_passed" : true

},
"downtime" : 0,
"downstart" : "2022-06-28T11:09:21.602Z",
"selected" : "2022-06-28T15:01:25.000Z"

},
{
"id" : 1,
"server" : "10.0.0.1:8089",

Nginx, Inc. p.103 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

"name" : "10.0.0.1:8089",
"backup" : true,
"weight" : 1,
"state" : "unhealthy",
"active" : 0,
"max_conns" : 20,
"requests" : 0,
"responses" : {

"1xx" : 0,
"2xx" : 0,
"3xx" : 0,
"4xx" : 0,
"5xx" : 0,
"codes" : {
},
"total" : 0

},
"sent" : 0,
"received" : 0,
"fails" : 0,
"unavail" : 0,
"health_checks" : {

"checks" : 26284,
"fails" : 26284,
"unhealthy" : 1,
"last_passed" : false

},
"downtime" : 262925617,
"downstart" : "2022-06-28T11:09:21.602Z",
"selected" : "2022-06-28T15:01:25.000Z"

}
],
"keepalive" : 0,
"zombies" : 0,
"zone" : "upstream_backend"

}
}

• HTTP Upstream Server:

Dynamically configurable parameters of an HTTP upstream server:

id (integer)
The ID of the HTTP upstream server. The ID is assigned
automatically and cannot be changed.

server (string)
Same as the address parameter of the HTTP upstream server.
When adding a server, it is possible to specify it as a domain name.
In this case, changes of the IP addresses that correspond to a domain
name will be monitored and automatically applied to the upstream
configuration without the need of restarting nginx. This requires
the resolver directive in the “http” block. See also the resolve
parameter of the HTTP upstream server.

service (string)
Same as the service parameter of the HTTP upstream server. This
parameter cannot be changed.

weight (integer)
Same as the weight parameter of the HTTP upstream server.

max_conns (integer)

Nginx, Inc. p.104 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

Same as the max conns parameter of the HTTP upstream server.

max_fails (integer)
Same as the max fails parameter of the HTTP upstream server.

fail_timeout (string)
Same as the fail timeout parameter of the HTTP upstream server.

slow_start (string)
Same as the slow start parameter of the HTTP upstream server.

route (string)
Same as the route parameter of the HTTP upstream server.

backup (boolean)
When true, adds a backup server. This parameter cannot be
changed.

down (boolean)
Same as the down parameter of the HTTP upstream server.

drain (boolean)
Same as the drain parameter of the HTTP upstream server.

parent (string)
Parent server ID of the resolved server. The ID is assigned
automatically and cannot be changed.

host (string)
Hostname of the resolved server. The hostname is assigned
automatically and cannot be changed.

Example:

{
"id" : 1,
"server" : "10.0.0.1:8089",
"weight" : 4,
"max_conns" : 0,
"max_fails" : 0,
"fail_timeout" : "10s",
"slow_start" : "10s",
"route" : "",
"backup" : true,
"down" : true

}

• HTTP Keyval Shared Memory Zone:

Contents of an HTTP keyval shared memory zone when using the GET
method.

Example:

{
"key1" : "value1",
"key2" : "value2",
"key3" : "value3"

}

• HTTP Keyval Shared Memory Zone:

Nginx, Inc. p.105 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

Contents of an HTTP keyval shared memory zone when using the POST
or PATCH methods.

Example:

{
"key1" : "value1",
"key2" : "value2",
"key3" : {

"value" : "value3",
"expire" : 30000

}
}

• Stream Server Zone:

processing (integer)
The number of client connections that are currently being processed.

connections (integer)
The total number of connections accepted from clients.

sessions
The total number of completed sessions, and the number of sessions
completed with status codes “2xx”, “4xx”, or “5xx”.

2xx (integer)
The total number of sessions completed with status codes
“2xx”.

4xx (integer)
The total number of sessions completed with status codes
“4xx”.

5xx (integer)
The total number of sessions completed with status codes
“5xx”.

total (integer)
The total number of completed client sessions.

discarded (integer)
The total number of connections completed without creating a
session.

received (integer)
The total number of bytes received from clients.

sent (integer)
The total number of bytes sent to clients.

ssl

handshakes (integer)
The total number of successful SSL handshakes.

handshakes_failed (integer)
The total number of failed SSL handshakes.

session_reuses (integer)
The total number of session reuses during SSL handshake.

Nginx, Inc. p.106 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

no_common_protocol (integer)
The number of SSL handshakes failed because of no common
protocol.

no_common_cipher (integer)
The number of SSL handshakes failed because of no shared
cipher.

handshake_timeout (integer)
The number of SSL handshakes failed because of a timeout.

peer_rejected_cert (integer)
The number of failed SSL handshakes when nginx presented the
certificate to the client but it was rejected with a corresponding
alert message.

verify_failures
SSL certificate verification errors

no_cert (integer)
A client did not provide the required certificate.

expired_cert (integer)
An expired or not yet valid certificate was presented by a
client.

revoked_cert (integer)
A revoked certificate was presented by a client.

other (integer)
Other SSL certificate verification errors.

Example:

{
"dns" : {

"processing" : 1,
"connections" : 155569,
"sessions" : {
"2xx" : 155564,
"4xx" : 0,
"5xx" : 0,
"total" : 155569

},
"discarded" : 0,
"received" : 4200363,
"sent" : 20489184,
"ssl" : {
"handshakes" : 76455,
"handshakes_failed" : 432,
"session_reuses" : 28770,
"no_common_protocol" : 4,
"no_common_cipher" : 2,
"handshake_timeout" : 0,
"peer_rejected_cert" : 0,
"verify_failures" : {
"no_cert" : 0,
"expired_cert" : 2,
"revoked_cert" : 1,
"other" : 1

}
}

}
}

Nginx, Inc. p.107 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

• Stream Connections Limiting:

passed (integer)
The total number of connections that were neither limited nor
accounted as limited.

rejected (integer)
The total number of connections that were rejected.

rejected_dry_run (integer)
The total number of connections accounted as rejected in the dry
run mode.

Example:

{
"passed" : 15,
"rejected" : 0,
"rejected_dry_run" : 2

}

• Stream Upstream:

peers
An array of:

id (integer)
The ID of the server.

server (string)
An address of the server.

service (string)
The service parameter value of the server directive.

name (string)
The name of the server specified in the server directive.

backup (boolean)
A boolean value indicating whether the server is a backup
server.

weight (integer)
Weight of the server.

state (string)
Current state, which may be one of “up”, “down”, “unavail”,
“checking”, or “unhealthy”.

active (integer)
The current number of connections.

ssl

handshakes (integer)
The total number of successful SSL handshakes.

handshakes_failed (integer)
The total number of failed SSL handshakes.

Nginx, Inc. p.108 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

session_reuses (integer)
The total number of session reuses during SSL handshake.

no_common_protocol (integer)
The number of SSL handshakes failed because of no
common protocol.

handshake_timeout (integer)
The number of SSL handshakes failed because of a timeout.

peer_rejected_cert (integer)
The number of failed SSL handshakes when nginx presented
the certificate to the upstream server but it was rejected
with a corresponding alert message.

verify_failures
SSL certificate verification errors

expired_cert (integer)
An expired or not yet valid certificate was presented by
an upstream server.

revoked_cert (integer)
A revoked certificate was presented by an upstream
server.

hostname_mismatch (integer)
Server’s certificate doesn’t match the hostname.

other (integer)
Other SSL certificate verification errors.

max_conns (integer)
The max conns limit for the server.

connections (integer)
The total number of client connections forwarded to this server.

connect_time (integer)
The average time to connect to the upstream server.

first_byte_time (integer)
The average time to receive the first byte of data.

response_time (integer)
The average time to receive the last byte of data.

sent (integer)
The total number of bytes sent to this server.

received (integer)
The total number of bytes received from this server.

fails (integer)
The total number of unsuccessful attempts to communicate
with the server.

unavail (integer)
How many times the server became unavailable for client
connections (state “unavail”) due to the number of
unsuccessful attempts reaching the max fails threshold.

health_checks

Nginx, Inc. p.109 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

checks (integer)
The total number of health check requests made.

fails (integer)
The number of failed health checks.

unhealthy (integer)
How many times the server became unhealthy (state
“unhealthy”).

last_passed (boolean)
Boolean indicating whether the last health check request
was successful and passed tests.

downtime (integer)
Total time the server was in the “unavail”, “checking”, and
“unhealthy” states.

downstart (string)
The time when the server became “unavail”, “checking”,
or “unhealthy”, in the ISO 8601 format with millisecond
resolution.

selected (string)
The time when the server was last selected to process a
connection, in the ISO 8601 format with millisecond resolution.

zombies (integer)
The current number of servers removed from the group but still
processing active client connections.

zone (string)
The name of the shared memory zone that keeps the group’s
configuration and run-time state.

Example:

{
"dns" : {

"peers" : [
{
"id" : 0,
"server" : "10.0.0.1:12347",
"name" : "10.0.0.1:12347",
"backup" : false,
"weight" : 5,
"state" : "up",
"active" : 0,
"ssl" : {

"handshakes" : 200,
"handshakes_failed" : 4,
"session_reuses" : 189,
"no_common_protocol" : 4,
"handshake_timeout" : 0,
"peer_rejected_cert" : 0,
"verify_failures" : {

"expired_cert" : 2,
"revoked_cert" : 1,
"hostname_mismatch" : 2,
"other" : 1

}
},
"max_conns" : 50,

Nginx, Inc. p.110 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

"connections" : 667231,
"sent" : 251946292,
"received" : 19222475454,
"fails" : 0,
"unavail" : 0,
"health_checks" : {

"checks" : 26214,
"fails" : 0,
"unhealthy" : 0,
"last_passed" : true

},
"downtime" : 0,
"downstart" : "2022-06-28T11:09:21.602Z",
"selected" : "2022-06-28T15:01:25.000Z"

},
{
"id" : 1,
"server" : "10.0.0.1:12348",
"name" : "10.0.0.1:12348",
"backup" : true,
"weight" : 1,
"state" : "unhealthy",
"active" : 0,
"max_conns" : 50,
"connections" : 0,
"sent" : 0,
"received" : 0,
"fails" : 0,
"unavail" : 0,
"health_checks" : {

"checks" : 26284,
"fails" : 26284,
"unhealthy" : 1,
"last_passed" : false

},
"downtime" : 262925617,
"downstart" : "2022-06-28T11:09:21.602Z",
"selected" : "2022-06-28T15:01:25.000Z"

}
],
"zombies" : 0,
"zone" : "dns"

}
}

• Stream Upstream Server:

Dynamically configurable parameters of a stream upstream server:

id (integer)
The ID of the stream upstream server. The ID is assigned
automatically and cannot be changed.

server (string)
Same as the address parameter of the stream upstream server.
When adding a server, it is possible to specify it as a domain name.
In this case, changes of the IP addresses that correspond to a domain
name will be monitored and automatically applied to the upstream
configuration without the need of restarting nginx. This requires
the resolver directive in the “stream” block. See also the resolve
parameter of the stream upstream server.

service (string)

Nginx, Inc. p.111 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

Same as the service parameter of the stream upstream server. This
parameter cannot be changed.

weight (integer)
Same as the weight parameter of the stream upstream server.

max_conns (integer)
Same as the max conns parameter of the stream upstream server.

max_fails (integer)
Same as the max fails parameter of the stream upstream server.

fail_timeout (string)
Same as the fail timeout parameter of the stream upstream server.

slow_start (string)
Same as the slow start parameter of the stream upstream server.

backup (boolean)
When true, adds a backup server. This parameter cannot be
changed.

down (boolean)
Same as the down parameter of the stream upstream server.

parent (string)
Parent server ID of the resolved server. The ID is assigned
automatically and cannot be changed.

host (string)
Hostname of the resolved server. The hostname is assigned
automatically and cannot be changed.

Example:

{
"id" : 0,
"server" : "10.0.0.1:12348",
"weight" : 1,
"max_conns" : 0,
"max_fails" : 1,
"fail_timeout" : "10s",
"slow_start" : 0,
"backup" : false,
"down" : false

}

• Stream Keyval Shared Memory Zone:

Contents of a stream keyval shared memory zone when using the GET
method.

Example:

{
"key1" : "value1",
"key2" : "value2",
"key3" : "value3"

}

Nginx, Inc. p.112 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

• Stream Keyval Shared Memory Zone:

Contents of a stream keyval shared memory zone when using the POST
or PATCH methods.

Example:

{
"key1" : "value1",
"key2" : "value2",
"key3" : {

"value" : "value3",
"expire" : 30000

}
}

• Stream Zone Sync Node:

zones
Synchronization information per each shared memory zone.
A collection of ”Sync Zone” objects

status
Synchronization information per node in a cluster.

bytes_in (integer)
The number of bytes received by this node.

msgs_in (integer)
The number of messages received by this node.

msgs_out (integer)
The number of messages sent by this node.

bytes_out (integer)
The number of bytes sent by this node.

nodes_online (integer)
The number of peers this node is connected to.

Example:

{
"zones" : {

"zone1" : {
"records_pending" : 2061,
"records_total" : 260575

},
"zone2" : {
"records_pending" : 0,
"records_total" : 14749

}
},
"status" : {

"bytes_in" : 1364923761,
"msgs_in" : 337236,
"msgs_out" : 346717,
"bytes_out" : 1402765472,
"nodes_online" : 15

}
}

Nginx, Inc. p.113 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

• Sync Zone:

Synchronization status of a shared memory zone.

records_pending (integer)
The number of records that need to be sent to the cluster.

records_total (integer)
The total number of records stored in the shared memory zone.

Resolver Zone:

Statistics of DNS requests and responses per particular resolver zone.

• requests

name (integer)
The total number of requests to resolve names to addresses.

srv (integer)
The total number of requests to resolve SRV records.

addr (integer)
The total number of requests to resolve addresses to names.

responses

noerror (integer)
The total number of successful responses.

formerr (integer)
The total number of FORMERR (Format error) responses.

servfail (integer)
The total number of SERVFAIL (Server failure) re-
sponses.

nxdomain (integer)
The total number of NXDOMAIN (Host not found)
responses.

notimp (integer)
The total number of NOTIMP (Unimplemented) responses.

refused (integer)
The total number of REFUSED (Operation refused)
responses.

timedout (integer)
The total number of timed out requests.

unknown (integer)
The total number of requests completed with an unknown error.

Example:

{
"resolver_zone1" : {

"requests" : {
"name" : 25460,
"srv" : 130,
"addr" : 2580

},

Nginx, Inc. p.114 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

"responses" : {
"noerror" : 26499,
"formerr" : 0,
"servfail" : 3,
"nxdomain" : 0,
"notimp" : 0,
"refused" : 0,
"timedout" : 243,
"unknown" : 478

}
}

}

• License:

License and usage reporting status of NGINX Plus instance.

eval (boolean)
Indicates whether NGINX Plus license is trial.

active_till (string)
The license expiry date and time taken from the JWT in the Epoch
Unix Timestamp format.

reporting

healthy (boolean)
Indicates whether the reporting state is still considered healthy
despite recent failed attempts.

fails (integer)
The number of failed reporting attempts, reset each time the
usage report is successfully sent.

grace (integer)
The number of seconds before traffic processing is stopped after
unsuccessful report attempt.

Example:

{
"eval" : false,
"active_till" : 1749268757,
"reporting" : {

"healthy" : true,
"fails" : 2,
"grace" : 15551961

}
}

• Worker process:

Statistics per each worker process.

id (integer)
The ID of the worker process.

pid (integer)
The PID identifier of the worker process used by the operating
system.

Nginx, Inc. p.115 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

connections
The number of accepted, dropped, active, and idle connections per
worker process.

accepted (integer)
The total number of client connections accepted by the worker
process.

dropped (integer)
The total number of client connections dropped by the worker
process.

active (integer)
The current number of active client connections that are
currently being handled by the worker process.

idle (integer)
The number of idle client connections that are currently being
handled by the worker process.

http

requests
The total number of client requests handled by the worker
process.

total (integer)
The total number of client requests received by the worker
process.

current (integer)
The current number of client requests that are currently
being processed by the worker process.

Example:

{
"id" : 0,
"pid" : 32212,
"connections" : {

"accepted" : 1,
"dropped" : 0,
"active" : 1,
"idle" : 0

},
"http" : {

"requests" : {
"total" : 15,
"current" : 1

}
}

}

• Error:

nginx error object.

error

status (integer)
HTTP error code.

Nginx, Inc. p.116 of 563

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP API MODULE

text (string)
Error description.

code (string)
Internal nginx error code.

request_id (string)
The ID of the request, equals the value of the $request id variable.

href (string)
Link to reference documentation.

Nginx, Inc. p.117 of 563

CHAPTER 2. HTTP SERVER MODULES 2.5. MODULE NGX HTTP AUTH BASIC MODULE

2.5 Module ngx http auth basic module

2.5.1 Summary . 118
2.5.2 Example Configuration 118
2.5.3 Directives . 118

auth basic . 118
auth basic user file . 118

2.5.1 Summary

The ngx_http_auth_basic_module module allows limiting access to
resources by validating the user name and password using the “HTTP Basic
Authentication” protocol.

Access can also be limited by address, by the result of subrequest, or
by JWT. Simultaneous limitation of access by address and by password is
controlled by the satisfy directive.

2.5.2 Example Configuration

location / {
auth_basic "closed site";
auth_basic_user_file conf/htpasswd;

}

2.5.3 Directives

auth basic

Syntax: auth_basic string | off;

Default off

Context: http, server, location, limit except

Enables validation of user name and password using the “HTTP Basic
Authentication” protocol. The specified parameter is used as a realm.
Parameter value can contain variables (1.3.10, 1.2.7). The special value off
cancels the effect of the auth_basic directive inherited from the previous
configuration level.

auth basic user file

Syntax: auth_basic_user_file file;

Default —

Context: http, server, location, limit except

Specifies a file that keeps user names and passwords, in the following format:

comment
name1:password1
name2:password2:comment

Nginx, Inc. p.118 of 563

CHAPTER 2. HTTP SERVER MODULES 2.5. MODULE NGX HTTP AUTH BASIC MODULE

name3:password3

The file name can contain variables.
The following password types are supported:

• encrypted with the crypt function; can be generated using the
“htpasswd” utility from the Apache HTTP Server distribution or the
“openssl passwd” command;

• hashed with the Apache variant of the MD5-based password algorithm
(apr1); can be generated with the same tools;

• specified by the “{scheme}data” syntax (1.0.3+) as described in RFC
2307; currently implemented schemes include PLAIN (an example one,
should not be used), SHA (1.3.13) (plain SHA-1 hashing, should not be
used) and SSHA (salted SHA-1 hashing, used by some software packages,
notably OpenLDAP and Dovecot).

Support for SHA scheme was added only to aid in migration from other
web servers. It should not be used for new passwords, since unsalted
SHA-1 hashing that it employs is vulnerable to rainbow table attacks.

Nginx, Inc. p.119 of 563

https://datatracker.ietf.org/doc/html/rfc2307#section-5.3
https://datatracker.ietf.org/doc/html/rfc2307#section-5.3
http://en.wikipedia.org/wiki/Rainbow_attack

CHAPTER 2. HTTP SERVER MODULES 2.6. MODULE NGX HTTP AUTH JWT MODULE

2.6 Module ngx http auth jwt module

2.6.1 Summary . 120
2.6.2 Supported Algorithms 120
2.6.3 Example Configuration 121
2.6.4 Directives . 121

auth jwt . 121
auth jwt claim set . 121
auth jwt header set . 122
auth jwt key cache . 122
auth jwt key file . 122
auth jwt key request . 123
auth jwt leeway . 123
auth jwt type . 124
auth jwt require . 124

2.6.5 Embedded Variables . 124

2.6.1 Summary

The ngx_http_auth_jwt_module module (1.11.3) implements client
authorization by validating the provided JSON Web Token (JWT) using the
specified keys. The module supports JSON Web Signature (JWS), JSON Web
Encryption (JWE) (1.19.7), and Nested JWT (1.21.0). The module can be
used for OpenID Connect authentication.

The module may be combined with other access modules, such as
ngx http access module, ngx http auth basic module, and ngx http auth -
request module, via the satisfy directive.

This module is available as part of our commercial subscription.

2.6.2 Supported Algorithms

The module supports the following JSON Web Algorithms.
JWS algorithms:

• HS256, HS384, HS512

• RS256, RS384, RS512

• ES256, ES384, ES512

• EdDSA (Ed25519 and Ed448 signatures) (1.15.7)

Prior to version 1.13.7, only HS256, RS256, ES256 algorithms were
supported.

JWE content encryption algorithms (1.19.7):

Nginx, Inc. p.120 of 563

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc7516
http://openid.net/specs/openid-connect-core-1_0.html
https://nginx.com/products/
https://www.iana.org/assignments/jose/jose.xhtml#web-signature-encryption-algorithms

CHAPTER 2. HTTP SERVER MODULES 2.6. MODULE NGX HTTP AUTH JWT MODULE

• A128CBC-HS256, A192CBC-HS384, A256CBC-HS512

• A128GCM, A192GCM, A256GCM

JWE key management algorithms (1.19.9):

• A128KW, A192KW, A256KW

• A128GCMKW, A192GCMKW, A256GCMKW

• dir - direct use of a shared symmetric key as the content encryption key

• RSA-OAEP, RSA-OAEP-256, RSA-OAEP-384, RSA-OAEP-512
(1.21.0)

2.6.3 Example Configuration

location / {
auth_jwt "closed site";
auth_jwt_key_file conf/keys.json;

}

2.6.4 Directives

auth jwt

Syntax: auth_jwt string [token=$variable] | off;

Default off

Context: http, server, location, limit except

Enables validation of JSON Web Token. The specified string is used as a
realm. Parameter value can contain variables.

The optional token parameter specifies a variable that contains JSON
Web Token. By default, JWT is passed in the Authorization header as a
Bearer Token. JWT may be also passed as a cookie or a part of a query string:

auth_jwt "closed site" token=$cookie_auth_token;

The special value off cancels the effect of the auth_jwt directive
inherited from the previous configuration level.

auth jwt claim set

Syntax: auth_jwt_claim_set $variable name . . . ;

Default —

Context: http
This directive appeared in version 1.11.10.

Sets the variable to a JWT claim parameter identified by key names. Name
matching starts from the top level of the JSON tree. For arrays, the variable
keeps a list of array elements separated by commas.

Nginx, Inc. p.121 of 563

https://datatracker.ietf.org/doc/html/rfc6750

CHAPTER 2. HTTP SERVER MODULES 2.6. MODULE NGX HTTP AUTH JWT MODULE

auth_jwt_claim_set $email info e-mail;
auth_jwt_claim_set $job info "job title";

Prior to version 1.13.7, only one key name could be specified, and the
result was undefined for arrays.

Variable values for tokens encrypted with JWE are available only after
decryption which occurs during the Access phase.

auth jwt header set

Syntax: auth_jwt_header_set $variable name . . . ;

Default —

Context: http
This directive appeared in version 1.11.10.

Sets the variable to a JOSE header parameter identified by key names.
Name matching starts from the top level of the JSON tree. For arrays, the
variable keeps a list of array elements separated by commas.

Prior to version 1.13.7, only one key name could be specified, and the
result was undefined for arrays.

auth jwt key cache

Syntax: auth_jwt_key_cache time;

Default 0

Context: http, server, location
This directive appeared in version 1.21.4.

Enables or disables caching of keys obtained from a file or from a subrequest,
and sets caching time for them. Caching of keys obtained from variables is not
supported. By default, caching of keys is disabled.

auth jwt key file

Syntax: auth_jwt_key_file file;

Default —

Context: http, server, location, limit except

Specifies a file in JSON Web Key Set format for validating JWT signature.
Parameter value can contain variables.

Several auth_jwt_key_file directives can be specified on the same
level (1.21.1):

auth_jwt_key_file conf/keys.json;
auth_jwt_key_file conf/key.jwk;

Nginx, Inc. p.122 of 563

https://datatracker.ietf.org/doc/html/rfc7517#section-5

CHAPTER 2. HTTP SERVER MODULES 2.6. MODULE NGX HTTP AUTH JWT MODULE

If at least one of the specified keys cannot be loaded or processed, nginx
will return the 500 Internal Server Error error.

auth jwt key request

Syntax: auth_jwt_key_request uri;

Default —

Context: http, server, location, limit except
This directive appeared in version 1.15.6.

Allows retrieving a JSON Web Key Set file from a subrequest for validating
JWT signature and sets the URI where the subrequest will be sent to.
Parameter value can contain variables. To avoid validation overhead, it is
recommended to cache the key file:

proxy_cache_path /data/nginx/cache levels=1 keys_zone=foo:10m;

server {
...

location / {
auth_jwt "closed site";
auth_jwt_key_request /jwks_uri;

}

location = /jwks_uri {
internal;
proxy_cache foo;
proxy_pass http://idp.example.com/keys;

}
}

Several auth_jwt_key_request directives can be specified on the same
level (1.21.1):

auth_jwt_key_request /jwks_uri;
auth_jwt_key_request /jwks2_uri;

If at least one of the specified keys cannot be loaded or processed, nginx
will return the 500 Internal Server Error error.

auth jwt leeway

Syntax: auth_jwt_leeway time;

Default 0s

Context: http, server, location
This directive appeared in version 1.13.10.

Sets the maximum allowable leeway to compensate clock skew when
verifying the exp and nbf JWT claims.

Nginx, Inc. p.123 of 563

https://datatracker.ietf.org/doc/html/rfc7517#section-5
https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.4
https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.5

CHAPTER 2. HTTP SERVER MODULES 2.6. MODULE NGX HTTP AUTH JWT MODULE

auth jwt type

Syntax: auth_jwt_type signed | encrypted | nested;

Default signed

Context: http, server, location, limit except
This directive appeared in version 1.19.7.

Specifies which type of JSON Web Token to expect: JWS (signed), JWE
(encrypted), or signed and then encrypted Nested JWT (nested) (1.21.0).

auth jwt require

Syntax: auth_jwt_require $value . . . [error=401 | 403] ;

Default —

Context: http, server, location, limit except
This directive appeared in version 1.21.2.

Specifies additional checks for JWT validation. The value can contain text,
variables, and their combination, and must start with a variable (1.21.7). The
authentication will succeed only if all the values are not empty and are not
equal to “0”.

map $jwt_claim_iss $valid_jwt_iss {
"good" 1;

}
...

auth_jwt_require $valid_jwt_iss;

If any of the checks fails, the 401 error code is returned. The optional
error parameter (1.21.7) allows redefining the error code to 403.

2.6.5 Embedded Variables

The ngx_http_auth_jwt_module module supports embedded vari-
ables:

$jwt header name
returns the value of a specified JOSE header

$jwt claim name
returns the value of a specified JWT claim
For nested claims and claims including a dot (“.”), the value of the
variable cannot be evaluated; the auth jwt claim set directive should
be used instead.
Variable values for tokens encrypted with JWE are available only after
decryption which occurs during the Access phase.

$jwt payload
returns the decrypted top-level payload of nested or encrypted
tokens (1.21.2). For nested tokens returns the enclosed JWS token. For
encrypted tokens returns JSON with claims.

Nginx, Inc. p.124 of 563

https://datatracker.ietf.org/doc/html/rfc7515#section-4
https://datatracker.ietf.org/doc/html/rfc7519#section-4

CHAPTER 2. HTTP SERVER MODULES 2.7. MODULE NGX HTTP AUTH REQUEST MODULE

2.7 Module ngx http auth request module

2.7.1 Summary . 125
2.7.2 Example Configuration 125
2.7.3 Directives . 125

auth request . 125
auth request set . 126

2.7.1 Summary

The ngx_http_auth_request_module module (1.5.4+) implements
client authorization based on the result of a subrequest. If the subrequest
returns a 2xx response code, the access is allowed. If it returns 401 or 403, the
access is denied with the corresponding error code. Any other response code
returned by the subrequest is considered an error.

For the 401 error, the client also receives the WWW-Authenticate header
from the subrequest response.

This module is not built by default, it should be enabled with the
--with-http_auth_request_module configuration parameter.

The module may be combined with other access modules, such as ngx -
http access module, ngx http auth basic module, and ngx http auth jwt -
module, via the satisfy directive.

Before version 1.7.3, responses to authorization subrequests could not be
cached (using proxy cache, proxy store, etc.).

2.7.2 Example Configuration

location /private/ {
auth_request /auth;
...

}

location = /auth {
proxy_pass ...
proxy_pass_request_body off;
proxy_set_header Content-Length "";
proxy_set_header X-Original-URI $request_uri;

}

2.7.3 Directives

auth request

Syntax: auth_request uri | off;

Default off

Context: http, server, location

Nginx, Inc. p.125 of 563

CHAPTER 2. HTTP SERVER MODULES 2.7. MODULE NGX HTTP AUTH REQUEST MODULE

Enables authorization based on the result of a subrequest and sets the URI
to which the subrequest will be sent.

auth request set

Syntax: auth_request_set $variable value;

Default —

Context: http, server, location

Sets the request variable to the given value after the authorization request
completes. The value may contain variables from the authorization request,
such as $upstream http *.

Nginx, Inc. p.126 of 563

CHAPTER 2. HTTP SERVER MODULES 2.8. MODULE NGX HTTP AUTOINDEX MODULE

2.8 Module ngx http autoindex module

2.8.1 Summary . 127
2.8.2 Example Configuration 127
2.8.3 Directives . 127

autoindex . 127
autoindex exact size . 127
autoindex format . 127
autoindex localtime . 128

2.8.1 Summary

The ngx_http_autoindex_module module processes requests ending
with the slash character (‘/’) and produces a directory listing. Usually a
request is passed to the ngx_http_autoindex_module module when the
ngx http index module module cannot find an index file.

2.8.2 Example Configuration

location / {
autoindex on;

}

2.8.3 Directives

autoindex

Syntax: autoindex on | off;

Default off

Context: http, server, location

Enables or disables the directory listing output.

autoindex exact size

Syntax: autoindex_exact_size on | off;

Default on

Context: http, server, location

For the HTML format, specifies whether exact file sizes should be output in
the directory listing, or rather rounded to kilobytes, megabytes, and gigabytes.

autoindex format

Syntax: autoindex_format html | xml | json | jsonp;

Default html

Context: http, server, location
This directive appeared in version 1.7.9.

Nginx, Inc. p.127 of 563

CHAPTER 2. HTTP SERVER MODULES 2.8. MODULE NGX HTTP AUTOINDEX MODULE

Sets the format of a directory listing.
When the JSONP format is used, the name of a callback function is set

with the callback request argument. If the argument is missing or has an
empty value, then the JSON format is used.

The XML output can be transformed using the ngx http xslt module
module.

autoindex localtime

Syntax: autoindex_localtime on | off;

Default off

Context: http, server, location

For the HTML format, specifies whether times in the directory listing
should be output in the local time zone or UTC.

Nginx, Inc. p.128 of 563

CHAPTER 2. HTTP SERVER MODULES 2.9. MODULE NGX HTTP BROWSER MODULE

2.9 Module ngx http browser module

2.9.1 Summary . 129
2.9.2 Example Configuration 129
2.9.3 Directives . 130

ancient browser . 130
ancient browser value 130
modern browser . 130
modern browser value 130

2.9.1 Summary

The ngx_http_browser_module module creates variables whose
values depend on the value of the User-Agent request header field:

$modern browser
equals the value set by the modern browser value directive, if a browser
was identified as modern;

$ancient browser
equals the value set by the ancient browser value directive, if a browser
was identified as ancient;

$msie
equals “1” if a browser was identified as MSIE of any version.

2.9.2 Example Configuration

Choosing an index file:

modern_browser_value "modern.";

modern_browser msie 5.5;
modern_browser gecko 1.0.0;
modern_browser opera 9.0;
modern_browser safari 413;
modern_browser konqueror 3.0;

index index.${modern_browser}html index.html;

Redirection for old browsers:

modern_browser msie 5.0;
modern_browser gecko 0.9.1;
modern_browser opera 8.0;
modern_browser safari 413;
modern_browser konqueror 3.0;

modern_browser unlisted;

ancient_browser Links Lynx netscape4;

if ($ancient_browser) {
rewrite ^ /ancient.html;

}

Nginx, Inc. p.129 of 563

CHAPTER 2. HTTP SERVER MODULES 2.9. MODULE NGX HTTP BROWSER MODULE

2.9.3 Directives

ancient browser

Syntax: ancient_browser string . . . ;

Default —

Context: http, server, location

If any of the specified substrings is found in the User-Agent request
header field, the browser will be considered ancient. The special string
“netscape4” corresponds to the regular expression “ˆMozilla/[1-4]”.

ancient browser value

Syntax: ancient_browser_value string;

Default 1

Context: http, server, location

Sets a value for the $ancient browser variables.

modern browser

Syntax: modern_browser browser version;

Syntax: modern_browser unlisted;

Default —

Context: http, server, location

Specifies a version starting from which a browser is considered modern. A
browser can be any one of the following: msie, gecko (browsers based on
Mozilla), opera, safari, or konqueror.

Versions can be specified in the following formats: X, X.X, X.X.X, or
X.X.X.X. The maximum values for each of the format are 4000, 4000.99,
4000.99.99, and 4000.99.99.99, respectively.

The special value unlisted specifies to consider a browser as modern if
it was not listed by the modern_browser and ancient browser directives.
Otherwise such a browser is considered ancient. If a request does not provide
the User-Agent field in the header, the browser is treated as not being listed.

modern browser value

Syntax: modern_browser_value string;

Default 1

Context: http, server, location

Sets a value for the $modern browser variables.

Nginx, Inc. p.130 of 563

CHAPTER 2. HTTP SERVER MODULES 2.10. MODULE NGX HTTP CHARSET MODULE

2.10 Module ngx http charset module

2.10.1 Summary . 131
2.10.2 Example Configuration 131
2.10.3 Directives . 131

charset . 131
charset map . 132
charset types . 133
override charset . 133
source charset . 133

2.10.1 Summary

The ngx_http_charset_module module adds the specified charset
to the Content-Type response header field. In addition, the module can
convert data from one charset to another, with some limitations:

• conversion is performed one way — from server to client,

• only single-byte charsets can be converted

• or single-byte charsets to/from UTF-8.

2.10.2 Example Configuration

include conf/koi-win;

charset windows-1251;
source_charset koi8-r;

2.10.3 Directives

charset

Syntax: charset charset | off;

Default off

Context: http, server, location, if in location

Adds the specified charset to the Content-Type response header field.
If this charset is different from the charset specified in the source charset
directive, a conversion is performed.

The parameter off cancels the addition of charset to the Content-Type
response header field.

A charset can be defined with a variable:

charset $charset;

Nginx, Inc. p.131 of 563

CHAPTER 2. HTTP SERVER MODULES 2.10. MODULE NGX HTTP CHARSET MODULE

In such a case, all possible values of a variable need to be present in the
configuration at least once in the form of the charset map, charset, or source -
charset directives. For utf-8, windows-1251, and koi8-r charsets, it is
sufficient to include the files conf/koi-win, conf/koi-utf, and conf¬
/win-utf into configuration. For other charsets, simply making a fictitious
conversion table works, for example:

charset_map iso-8859-5 _ { }

In addition, a charset can be set in the X-Accel-Charset response
header field. This capability can be disabled using the proxy ignore headers,
fastcgi ignore headers, uwsgi ignore headers, scgi ignore headers, and grpc -
ignore headers directives.

charset map

Syntax: charset_map charset1 charset2 { . . . }
Default —

Context: http

Describes the conversion table from one charset to another. A reverse
conversion table is built using the same data. Character codes are given in
hexadecimal. Missing characters in the range 80-FF are replaced with “?”.
When converting from UTF-8, characters missing in a one-byte charset are
replaced with “&#XXXX;”.

Example:

charset_map koi8-r windows-1251 {
C0 FE ; # small yu
C1 E0 ; # small a
C2 E1 ; # small b
C3 F6 ; # small ts
...

}

When describing a conversion table to UTF-8, codes for the UTF-8 charset
should be given in the second column, for example:

charset_map koi8-r utf-8 {
C0 D18E ; # small yu
C1 D0B0 ; # small a
C2 D0B1 ; # small b
C3 D186 ; # small ts
...

}

Full conversion tables from koi8-r to windows-1251, and from koi8-r
and windows-1251 to utf-8 are provided in the distribution files conf/¬
koi-win, conf/koi-utf, and conf/win-utf.

Nginx, Inc. p.132 of 563

CHAPTER 2. HTTP SERVER MODULES 2.10. MODULE NGX HTTP CHARSET MODULE

charset types

Syntax: charset_types mime-type . . . ;

Default text/html text/xml text/plain text/vnd.wap.wml

application/javascript application/rss+xml

Context: http, server, location
This directive appeared in version 0.7.9.

Enables module processing in responses with the specified MIME types in
addition to “text/html”. The special value “*” matches any MIME type
(0.8.29).

Until version 1.5.4, “application/x-javascript” was used as the
default MIME type instead of “application/javascript”.

override charset

Syntax: override_charset on | off;

Default off

Context: http, server, location, if in location

Determines whether a conversion should be performed for answers received
from a proxied or a FastCGI/uwsgi/SCGI/gRPC server when the answers
already carry a charset in the Content-Type response header field. If
conversion is enabled, a charset specified in the received response is used as a
source charset.

It should be noted that if a response is received in a subrequest then the
conversion from the response charset to the main request charset is always
performed, regardless of the override_charset directive setting.

source charset

Syntax: source_charset charset;

Default —

Context: http, server, location, if in location

Defines the source charset of a response. If this charset is different from
the charset specified in the charset directive, a conversion is performed.

Nginx, Inc. p.133 of 563

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP DAV MODULE

2.11 Module ngx http dav module

2.11.1 Summary . 134
2.11.2 Example Configuration 134
2.11.3 Directives . 134

create full put path . 134
dav access . 135
dav methods . 135
min delete depth . 135

2.11.1 Summary

The ngx_http_dav_module module is intended for file management
automation via the WebDAV protocol. The module processes HTTP and
WebDAV methods PUT, DELETE, MKCOL, COPY, and MOVE.

This module is not built by default, it should be enabled with the
--with-http_dav_module configuration parameter.

WebDAV clients that require additional WebDAV methods to operate will
not work with this module.

2.11.2 Example Configuration

location / {
root /data/www;

client_body_temp_path /data/client_temp;

dav_methods PUT DELETE MKCOL COPY MOVE;

create_full_put_path on;
dav_access group:rw all:r;

limit_except GET {
allow 192.168.1.0/32;
deny all;

}
}

2.11.3 Directives

create full put path

Syntax: create_full_put_path on | off;

Default off

Context: http, server, location

The WebDAV specification only allows creating files in already existing
directories. This directive allows creating all needed intermediate directories.

Nginx, Inc. p.134 of 563

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP DAV MODULE

dav access

Syntax: dav_access users:permissions . . . ;

Default user:rw

Context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

dav_access user:rw group:rw all:r;

If any group or all access permissions are specified then user
permissions may be omitted:

dav_access group:rw all:r;

dav methods

Syntax: dav_methods off | method . . . ;

Default off

Context: http, server, location

Allows the specified HTTP and WebDAV methods. The parameter off
denies all methods processed by this module. The following methods are
supported: PUT, DELETE, MKCOL, COPY, and MOVE.

A file uploaded with the PUT method is first written to a temporary file,
and then the file is renamed. Starting from version 0.8.9, temporary files and
the persistent store can be put on different file systems. However, be aware
that in this case a file is copied across two file systems instead of the cheap
renaming operation. It is thus recommended that for any given location both
saved files and a directory holding temporary files, set by the client body -
temp path directive, are put on the same file system.

When creating a file with the PUT method, it is possible to specify the
modification date by passing it in the Date header field.

min delete depth

Syntax: min_delete_depth number;

Default 0

Context: http, server, location

Allows the DELETE method to remove files provided that the number of
elements in a request path is not less than the specified number. For example,
the directive

min_delete_depth 4;

allows removing files on requests

/users/00/00/name
/users/00/00/name/pic.jpg

Nginx, Inc. p.135 of 563

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP DAV MODULE

/users/00/00/page.html

and denies the removal of

/users/00/00

Nginx, Inc. p.136 of 563

CHAPTER 2. HTTP SERVER MODULES 2.12. MODULE NGX HTTP EMPTY GIF MODULE

2.12 Module ngx http empty gif module

2.12.1 Summary . 137
2.12.2 Example Configuration 137
2.12.3 Directives . 137

empty gif . 137

2.12.1 Summary

The ngx_http_empty_gif_module module emits single-pixel trans-
parent GIF.

2.12.2 Example Configuration

location = /_.gif {
empty_gif;

}

2.12.3 Directives

empty gif

Syntax: empty_gif;

Default —

Context: location

Turns on module processing in a surrounding location.

Nginx, Inc. p.137 of 563

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP F4F MODULE

2.13 Module ngx http f4f module

2.13.1 Summary . 138
2.13.2 Example Configuration 138
2.13.3 Directives . 138

f4f . 138
f4f buffer size . 138

2.13.1 Summary

The ngx_http_f4f_module module provides server-side support for
Adobe HTTP Dynamic Streaming (HDS).

This module implements handling of HTTP Dynamic Streaming requests
in the “/videoSeg1-Frag1” form — extracting the needed fragment from
the videoSeg1.f4f file using the videoSeg1.f4x index file. This module
is an alternative to the Adobe’s f4f module (HTTP Origin Module) for Apache.

Usual pre-processing with Adobe’s f4fpackager is required, see relevant
documentation for details.

This module is available as part of our commercial subscription.

2.13.2 Example Configuration

location /video/ {
f4f;
...

}

2.13.3 Directives

f4f

Syntax: f4f;

Default —

Context: location

Turns on module processing in the surrounding location.

f4f buffer size

Syntax: f4f_buffer_size size;

Default 512k

Context: http, server, location

Sets the size of the buffer used for reading the .f4x index file.

Nginx, Inc. p.138 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

2.14 Module ngx http fastcgi module

2.14.1 Summary . 140
2.14.2 Example Configuration 140
2.14.3 Directives . 140

fastcgi bind . 140
fastcgi buffer size . 141
fastcgi buffering . 141
fastcgi buffers . 141
fastcgi busy buffers size 142
fastcgi cache . 142
fastcgi cache background update 142
fastcgi cache bypass . 142
fastcgi cache key . 143
fastcgi cache lock . 143
fastcgi cache lock age 143
fastcgi cache lock timeout 143
fastcgi cache max range offset 144
fastcgi cache methods 144
fastcgi cache min uses 144
fastcgi cache path . 144
fastcgi cache purge . 146
fastcgi cache revalidate 147
fastcgi cache use stale 147
fastcgi cache valid . 148
fastcgi catch stderr . 148
fastcgi connect timeout 149
fastcgi force ranges . 149
fastcgi hide header . 149
fastcgi ignore client abort 149
fastcgi ignore headers 150
fastcgi index . 150
fastcgi intercept errors 150
fastcgi keep conn . 151
fastcgi limit rate . 151
fastcgi max temp file size 151
fastcgi next upstream 151
fastcgi next upstream timeout 152
fastcgi next upstream tries 153
fastcgi no cache . 153
fastcgi param . 153
fastcgi pass . 154
fastcgi pass header . 154
fastcgi pass request body 154
fastcgi pass request headers 155
fastcgi read timeout . 155

Nginx, Inc. p.139 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi request buffering 155
fastcgi send lowat . 155
fastcgi send timeout . 156
fastcgi socket keepalive 156
fastcgi split path info 156
fastcgi store . 156
fastcgi store access . 157
fastcgi temp file write size 158
fastcgi temp path . 158

2.14.4 Parameters Passed to a FastCGI Server 158
2.14.5 Embedded Variables . 158

2.14.1 Summary

The ngx_http_fastcgi_module module allows passing requests to a
FastCGI server.

2.14.2 Example Configuration

location / {
fastcgi_pass localhost:9000;
fastcgi_index index.php;

fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;
fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;

}

2.14.3 Directives

fastcgi bind

Syntax: fastcgi_bind address [transparent] | off;

Default —

Context: http, server, location
This directive appeared in version 0.8.22.

Makes outgoing connections to a FastCGI server originate from the
specified local IP address with an optional port (1.11.2). Parameter value can
contain variables (1.3.12). The special value off (1.3.12) cancels the effect of
the fastcgi_bind directive inherited from the previous configuration level,
which allows the system to auto-assign the local IP address and port.

The transparent parameter (1.11.0) allows outgoing connections to a
FastCGI server originate from a non-local IP address, for example, from a real
IP address of a client:

fastcgi_bind $remote_addr transparent;

Nginx, Inc. p.140 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

In order for this parameter to work, it is usually necessary to run nginx
worker processes with the superuser privileges. On Linux it is not required
(1.13.8) as if the transparent parameter is specified, worker processes
inherit the CAP_NET_RAW capability from the master process. It is also
necessary to configure kernel routing table to intercept network traffic from
the FastCGI server.

fastcgi buffer size

Syntax: fastcgi_buffer_size size;

Default 4k|8k

Context: http, server, location

Sets the size of the buffer used for reading the first part of the response
received from the FastCGI server. This part usually contains a small response
header. By default, the buffer size is equal to one memory page. This is either
4K or 8K, depending on a platform. It can be made smaller, however.

fastcgi buffering

Syntax: fastcgi_buffering on | off;

Default on

Context: http, server, location
This directive appeared in version 1.5.6.

Enables or disables buffering of responses from the FastCGI server.
When buffering is enabled, nginx receives a response from the FastCGI

server as soon as possible, saving it into the buffers set by the fastcgi buffer -
size and fastcgi buffers directives. If the whole response does not fit into
memory, a part of it can be saved to a temporary file on the disk. Writing
to temporary files is controlled by the fastcgi max temp file size and fastcgi -
temp file write size directives.

When buffering is disabled, the response is passed to a client synchronously,
immediately as it is received. nginx will not try to read the whole response
from the FastCGI server. The maximum size of the data that nginx can receive
from the server at a time is set by the fastcgi buffer size directive.

Buffering can also be enabled or disabled by passing “yes” or “no” in the
X-Accel-Buffering response header field. This capability can be disabled
using the fastcgi ignore headers directive.

fastcgi buffers

Syntax: fastcgi_buffers number size;

Default 8 4k|8k

Context: http, server, location

Sets the number and size of the buffers used for reading a response from
the FastCGI server, for a single connection. By default, the buffer size is equal
to one memory page. This is either 4K or 8K, depending on a platform.

Nginx, Inc. p.141 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi busy buffers size

Syntax: fastcgi_busy_buffers_size size;

Default 8k|16k

Context: http, server, location

When buffering of responses from the FastCGI server is enabled, limits the
total size of buffers that can be busy sending a response to the client while the
response is not yet fully read. In the meantime, the rest of the buffers can be
used for reading the response and, if needed, buffering part of the response to
a temporary file. By default, size is limited by the size of two buffers set by
the fastcgi buffer size and fastcgi buffers directives.

fastcgi cache

Syntax: fastcgi_cache zone | off;

Default off

Context: http, server, location

Defines a shared memory zone used for caching. The same zone can be
used in several places. Parameter value can contain variables (1.7.9). The off
parameter disables caching inherited from the previous configuration level.

fastcgi cache background update

Syntax: fastcgi_cache_background_update on | off;

Default off

Context: http, server, location
This directive appeared in version 1.11.10.

Allows starting a background subrequest to update an expired cache item,
while a stale cached response is returned to the client. Note that it is necessary
to allow the usage of a stale cached response when it is being updated.

fastcgi cache bypass

Syntax: fastcgi_cache_bypass string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be taken from a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be taken from the cache:

fastcgi_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
fastcgi_cache_bypass $http_pragma $http_authorization;

Can be used along with the fastcgi no cache directive.

Nginx, Inc. p.142 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi cache key

Syntax: fastcgi_cache_key string;

Default —

Context: http, server, location

Defines a key for caching, for example

fastcgi_cache_key localhost:9000$request_uri;

fastcgi cache lock

Syntax: fastcgi_cache_lock on | off;

Default off

Context: http, server, location
This directive appeared in version 1.1.12.

When enabled, only one request at a time will be allowed to populate a new
cache element identified according to the fastcgi cache key directive by passing
a request to a FastCGI server. Other requests of the same cache element will
either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the fastcgi cache lock timeout
directive.

fastcgi cache lock age

Syntax: fastcgi_cache_lock_age time;

Default 5s

Context: http, server, location
This directive appeared in version 1.7.8.

If the last request passed to the FastCGI server for populating a new cache
element has not completed for the specified time, one more request may be
passed to the FastCGI server.

fastcgi cache lock timeout

Syntax: fastcgi_cache_lock_timeout time;

Default 5s

Context: http, server, location
This directive appeared in version 1.1.12.

Sets a timeout for fastcgi cache lock. When the time expires, the request
will be passed to the FastCGI server, however, the response will not be cached.

Before 1.7.8, the response could be cached.

Nginx, Inc. p.143 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi cache max range offset

Syntax: fastcgi_cache_max_range_offset number;

Default —

Context: http, server, location
This directive appeared in version 1.11.6.

Sets an offset in bytes for byte-range requests. If the range is beyond the
offset, the range request will be passed to the FastCGI server and the response
will not be cached.

fastcgi cache methods

Syntax: fastcgi_cache_methods GET | HEAD | POST . . . ;

Default GET HEAD

Context: http, server, location
This directive appeared in version 0.7.59.

If the client request method is listed in this directive then the response will
be cached. “GET” and “HEAD” methods are always added to the list, though
it is recommended to specify them explicitly. See also the fastcgi no cache
directive.

fastcgi cache min uses

Syntax: fastcgi_cache_min_uses number;

Default 1

Context: http, server, location

Sets the number of requests after which the response will be cached.

fastcgi cache path

Syntax: fastcgi_cache_path path [levels=levels]

[use_temp_path=on|off] keys_zone=name:size [inactive=time]

[max_size=size] [min_free=size] [manager_files=number]

[manager_sleep=time] [manager_threshold=time]

[loader_files=number] [loader_sleep=time]

[loader_threshold=time] [purger=on|off]

[purger_files=number] [purger_sleep=time]

[purger_threshold=time];

Default —

Context: http

Sets the path and other parameters of a cache. Cache data are stored in
files. Both the key and file name in a cache are a result of applying the MD5
function to the proxied URL.

The levels parameter defines hierarchy levels of a cache: from 1 to 3,
each level accepts values 1 or 2. For example, in the following configuration

Nginx, Inc. p.144 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi_cache_path /data/nginx/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/nginx/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file is
renamed. Starting from version 0.8.9, temporary files and the cache can be put
on different file systems. However, be aware that in this case a file is copied
across two file systems instead of the cheap renaming operation. It is thus
recommended that for any given location both cache and a directory holding
temporary files are put on the same file system. A directory for temporary files
is set based on the use_temp_path parameter (1.7.10). If this parameter
is omitted or set to the value on, the directory set by the fastcgi temp -
path directive for the given location will be used. If the value is set to off,
temporary files will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a
shared memory zone, whose name and size are configured by the keys_zone
parameter. One megabyte zone can store about 8 thousand keys.

As part of commercial subscription, the shared memory zone also stores
extended cache information, thus, it is required to specify a larger zone size
for the same number of keys. For example, one megabyte zone can store
about 4 thousand keys.

Cached data that are not accessed during the time specified by the
inactive parameter get removed from the cache regardless of their freshness.
By default, inactive is set to 10 minutes.

The special “cache manager” process monitors the maximum cache size set
by the max_size parameter, and the minimum amount of free space set by the
min_free (1.19.1) parameter on the file system with cache. When the size
is exceeded or there is not enough free space, it removes the least recently
used data. The data is removed in iterations configured by manager_-
files, manager_threshold, and manager_sleep parameters (1.11.5).
During one iteration no more than manager_files items are deleted (by
default, 100). The duration of one iteration is limited by the manager_-
threshold parameter (by default, 200 milliseconds). Between iterations,
a pause configured by the manager_sleep parameter (by default, 50
milliseconds) is made.

A minute after the start the special “cache loader” process is activated. It
loads information about previously cached data stored on file system into a
cache zone. The loading is also done in iterations. During one iteration no
more than loader_files items are loaded (by default, 100). Besides, the
duration of one iteration is limited by the loader_threshold parameter
(by default, 200 milliseconds). Between iterations, a pause configured by the
loader_sleep parameter (by default, 50 milliseconds) is made.

Nginx, Inc. p.145 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

Additionally, the following parameters are available as part of our
commercial subscription:

purger=on|off
Instructs whether cache entries that match a wildcard key will be
removed from the disk by the cache purger (1.7.12). Setting the
parameter to on (default is off) will activate the “cache purger” process
that permanently iterates through all cache entries and deletes the entries
that match the wildcard key.

purger_files=number
Sets the number of items that will be scanned during one iteration
(1.7.12). By default, purger_files is set to 10.

purger_threshold=number
Sets the duration of one iteration (1.7.12). By default, purger_-
threshold is set to 50 milliseconds.

purger_sleep=number
Sets a pause between iterations (1.7.12). By default, purger_sleep is
set to 50 milliseconds.

In versions 1.7.3, 1.7.7, and 1.11.10 cache header format has been changed.
Previously cached responses will be considered invalid after upgrading to a
newer nginx version.

fastcgi cache purge

Syntax: fastcgi_cache_purgestring . . . ;

Default —

Context: http, server, location
This directive appeared in version 1.5.7.

Defines conditions under which the request will be considered a cache purge
request. If at least one value of the string parameters is not empty and
is not equal to “0” then the cache entry with a corresponding cache key is
removed. The result of successful operation is indicated by returning the 204
No Content response.

If the cache key of a purge request ends with an asterisk (“*”), all cache
entries matching the wildcard key will be removed from the cache. However,
these entries will remain on the disk until they are deleted for either inactivity,
or processed by the cache purger (1.7.12), or a client attempts to access them.

Example configuration:

fastcgi_cache_path /data/nginx/cache keys_zone=cache_zone:10m;

map $request_method $purge_method {
PURGE 1;
default 0;

}

server {
...

Nginx, Inc. p.146 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

location / {
fastcgi_pass backend;
fastcgi_cache cache_zone;
fastcgi_cache_key $uri;
fastcgi_cache_purge $purge_method;

}
}

This functionality is available as part of our commercial subscription.

fastcgi cache revalidate

Syntax: fastcgi_cache_revalidate on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.7.

Enables revalidation of expired cache items using conditional requests with
the If-Modified-Since and If-None-Match header fields.

fastcgi cache use stale

Syntax: fastcgi_cache_use_stale error | timeout | invalid_header
| updating | http_500 | http_503 | http_403 | http_404 |
http_429 | off . . . ;

Default off

Context: http, server, location

Determines in which cases a stale cached response can be used when an
error occurs during communication with the FastCGI server. The directive’s
parameters match the parameters of the fastcgi next upstream directive.

The error parameter also permits using a stale cached response if a
FastCGI server to process a request cannot be selected.

Additionally, the updating parameter permits using a stale cached
response if it is currently being updated. This allows minimizing the number
of accesses to FastCGI servers when updating cached data.

Using a stale cached response can also be enabled directly in the response
header for a specified number of seconds after the response became stale
(1.11.10). This has lower priority than using the directive parameters.

• The “stale-while-revalidate” extension of the Cache-Control header
field permits using a stale cached response if it is currently being updated.

• The “stale-if-error” extension of the Cache-Control header field
permits using a stale cached response in case of an error.

To minimize the number of accesses to FastCGI servers when populating a
new cache element, the fastcgi cache lock directive can be used.

Nginx, Inc. p.147 of 563

https://nginx.com/products/
https://datatracker.ietf.org/doc/html/rfc5861#section-3
https://datatracker.ietf.org/doc/html/rfc5861#section-4

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi cache valid

Syntax: fastcgi_cache_valid [code . . .] time;

Default —

Context: http, server, location

Sets caching time for different response codes. For example, the following
directives

fastcgi_cache_valid 200 302 10m;
fastcgi_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute
for responses with code 404.

If only caching time is specified

fastcgi_cache_valid 5m;

then only 200, 301, and 302 responses are cached.
In addition, the any parameter can be specified to cache any responses:

fastcgi_cache_valid 200 302 10m;
fastcgi_cache_valid 301 1h;
fastcgi_cache_valid any 1m;

Parameters of caching can also be set directly in the response header. This
has higher priority than setting of caching time using the directive.

• The X-Accel-Expires header field sets caching time of a response in
seconds. The zero value disables caching for a response. If the value
starts with the @ prefix, it sets an absolute time in seconds since Epoch,
up to which the response may be cached.

• If the header does not include the X-Accel-Expires field, parameters
of caching may be set in the header fields Expires or Cache-Control.

• If the header includes the Set-Cookie field, such a response will not
be cached.

• If the header includes the Vary field with the special value “*”, such a
response will not be cached (1.7.7). If the header includes the Vary field
with another value, such a response will be cached taking into account
the corresponding request header fields (1.7.7).

Processing of one or more of these response header fields can be disabled using
the fastcgi ignore headers directive.

fastcgi catch stderr

Syntax: fastcgi_catch_stderr string;

Default —

Context: http, server, location

Nginx, Inc. p.148 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

Sets a string to search for in the error stream of a response received from
a FastCGI server. If the string is found then it is considered that the FastCGI
server has returned an invalid response. This allows handling application errors
in nginx, for example:

location /php/ {
fastcgi_pass backend:9000;
...
fastcgi_catch_stderr "PHP Fatal error";
fastcgi_next_upstream error timeout invalid_header;

}

fastcgi connect timeout

Syntax: fastcgi_connect_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for establishing a connection with a FastCGI server. It
should be noted that this timeout cannot usually exceed 75 seconds.

fastcgi force ranges

Syntax: fastcgi_force_ranges on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.7.

Enables byte-range support for both cached and uncached responses from
the FastCGI server regardless of the Accept-Ranges field in these responses.

fastcgi hide header

Syntax: fastcgi_hide_header field;

Default —

Context: http, server, location

By default, nginx does not pass the header fields Status and
X-Accel-... from the response of a FastCGI server to a client. The
fastcgi_hide_header directive sets additional fields that will not be
passed. If, on the contrary, the passing of fields needs to be permitted, the
fastcgi pass header directive can be used.

fastcgi ignore client abort

Syntax: fastcgi_ignore_client_abort on | off;

Default off

Context: http, server, location

Determines whether the connection with a FastCGI server should be closed
when a client closes the connection without waiting for a response.

Nginx, Inc. p.149 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi ignore headers

Syntax: fastcgi_ignore_headers field . . . ;

Default —

Context: http, server, location

Disables processing of certain response header fields from
the FastCGI server. The following fields can be ignored:
X-Accel-Redirect, X-Accel-Expires, X-Accel-Limit-Rate
(1.1.6), X-Accel-Buffering (1.1.6), X-Accel-Charset (1.1.6),
Expires, Cache-Control, Set-Cookie (0.8.44), and Vary (1.7.7).

If not disabled, processing of these header fields has the following effect:

• X-Accel-Expires, Expires, Cache-Control, Set-Cookie, and
Vary set the parameters of response caching;

• X-Accel-Redirect performs an internal redirect to the specified URI;

• X-Accel-Limit-Rate sets the rate limit for transmission of a
response to a client;

• X-Accel-Buffering enables or disables buffering of a response;

• X-Accel-Charset sets the desired charset of a response.

fastcgi index

Syntax: fastcgi_index name;

Default —

Context: http, server, location

Sets a file name that will be appended after a URI that ends with a slash, in
the value of the $fastcgi script name variable. For example, with these settings

fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;

and the“/page.php” request, the SCRIPT_FILENAME parameter will be
equal to“/home/www/scripts/php/page.php”, and with the“/” request
it will be equal to “/home/www/scripts/php/index.php”.

fastcgi intercept errors

Syntax: fastcgi_intercept_errors on | off;

Default off

Context: http, server, location

Determines whether FastCGI server responses with codes greater than or
equal to 300 should be passed to a client or be intercepted and redirected to
nginx for processing with the error page directive.

Nginx, Inc. p.150 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi keep conn

Syntax: fastcgi_keep_conn on | off;

Default off

Context: http, server, location
This directive appeared in version 1.1.4.

By default, a FastCGI server will close a connection right after sending
the response. However, when this directive is set to the value on, nginx will
instruct a FastCGI server to keep connections open. This is necessary, in
particular, for keepalive connections to FastCGI servers to function.

fastcgi limit rate

Syntax: fastcgi_limit_rate rate;

Default 0

Context: http, server, location
This directive appeared in version 1.7.7.

Limits the speed of reading the response from the FastCGI server. The
rate is specified in bytes per second. The zero value disables rate limiting. The
limit is set per a request, and so if nginx simultaneously opens two connections
to the FastCFI server, the overall rate will be twice as much as the specified
limit. The limitation works only if buffering of responses from the FastCGI
server is enabled. Parameter value can contain variables (1.27.0).

fastcgi max temp file size

Syntax: fastcgi_max_temp_file_size size;

Default 1024m

Context: http, server, location

When buffering of responses from the FastCGI server is enabled, and the
whole response does not fit into the buffers set by the fastcgi buffer size and
fastcgi buffers directives, a part of the response can be saved to a temporary
file. This directive sets the maximum size of the temporary file. The size of
data written to the temporary file at a time is set by the fastcgi temp file -
write size directive.

The zero value disables buffering of responses to temporary files.

This restriction does not apply to responses that will be cached or stored
on disk.

fastcgi next upstream

Syntax: fastcgi_next_upstream error | timeout | invalid_header |
http_500 | http_503 | http_403 | http_404 | http_429 |
non_idempotent | off . . . ;

Default error timeout

Context: http, server, location

Nginx, Inc. p.151 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_header
a server returned an empty or invalid response;

http_500
a server returned a response with the code 500;

http_503
a server returned a response with the code 503;

http_403
a server returned a response with the code 403;

http_404
a server returned a response with the code 404;

http_429
a server returned a response with the code 429 (1.11.13);

non_idempotent
normally, requests with a non-idempotent method (POST, LOCK, PATCH)
are not passed to the next server if a request has been sent to an
upstream server (1.9.13); enabling this option explicitly allows retrying
such requests;

off
disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of
communication with a server. The cases of error, timeout and invalid_-
header are always considered unsuccessful attempts, even if they are not
specified in the directive. The cases of http_500, http_503, and http_-
429 are considered unsuccessful attempts only if they are specified in the
directive. The cases of http_403 and http_404 are never considered
unsuccessful attempts.

Passing a request to the next server can be limited by the number of tries
and by time.

fastcgi next upstream timeout

Syntax: fastcgi_next_upstream_timeout time;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Nginx, Inc. p.152 of 563

https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.2

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

fastcgi next upstream tries

Syntax: fastcgi_next_upstream_tries number;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

fastcgi no cache

Syntax: fastcgi_no_cache string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be saved to a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be saved:

fastcgi_no_cache $cookie_nocache $arg_nocache$arg_comment;
fastcgi_no_cache $http_pragma $http_authorization;

Can be used along with the fastcgi cache bypass directive.

fastcgi param

Syntax: fastcgi_param parameter value [if_not_empty];

Default —

Context: http, server, location

Sets a parameter that should be passed to the FastCGI server. The
value can contain text, variables, and their combination. These directives
are inherited from the previous configuration level if and only if there are no
fastcgi_param directives defined on the current level.

The following example shows the minimum required settings for PHP:

fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;
fastcgi_param QUERY_STRING $query_string;

The SCRIPT_FILENAME parameter is used in PHP for determining the
script name, and the QUERY_STRING parameter is used to pass request
parameters.

For scripts that process POST requests, the following three parameters are
also required:

fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;

Nginx, Inc. p.153 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi_param CONTENT_LENGTH $content_length;

If PHP was built with the --enable-force-cgi-redirect configu-
ration parameter, the REDIRECT_STATUS parameter should also be passed
with the value “200”:

fastcgi_param REDIRECT_STATUS 200;

If the directive is specified with if_not_empty (1.1.11) then such a
parameter will be passed to the server only if its value is not empty:

fastcgi_param HTTPS $https if_not_empty;

fastcgi pass

Syntax: fastcgi_pass address;

Default —

Context: location, if in location

Sets the address of a FastCGI server. The address can be specified as a
domain name or IP address, and a port:

fastcgi_pass localhost:9000;

or as a UNIX-domain socket path:

fastcgi_pass unix:/tmp/fastcgi.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

Parameter value can contain variables. In this case, if an address is specified
as a domain name, the name is searched among the described server groups,
and, if not found, is determined using a resolver.

fastcgi pass header

Syntax: fastcgi_pass_header field;

Default —

Context: http, server, location

Permits passing otherwise disabled header fields from a FastCGI server to
a client.

fastcgi pass request body

Syntax: fastcgi_pass_request_body on | off;

Default on

Context: http, server, location

Nginx, Inc. p.154 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

Indicates whether the original request body is passed to the FastCGI server.
See also the fastcgi pass request headers directive.

fastcgi pass request headers

Syntax: fastcgi_pass_request_headers on | off;

Default on

Context: http, server, location

Indicates whether the header fields of the original request are passed to the
FastCGI server. See also the fastcgi pass request body directive.

fastcgi read timeout

Syntax: fastcgi_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the FastCGI server. The
timeout is set only between two successive read operations, not for the
transmission of the whole response. If the FastCGI server does not transmit
anything within this time, the connection is closed.

fastcgi request buffering

Syntax: fastcgi_request_buffering on | off;

Default on

Context: http, server, location
This directive appeared in version 1.7.11.

Enables or disables buffering of a client request body.
When buffering is enabled, the entire request body is read from the client

before sending the request to a FastCGI server.
When buffering is disabled, the request body is sent to the FastCGI server

immediately as it is received. In this case, the request cannot be passed to the
next server if nginx already started sending the request body.

fastcgi send lowat

Syntax: fastcgi_send_lowat size;

Default 0

Context: http, server, location

If the directive is set to a non-zero value, nginx will try to minimize the
number of send operations on outgoing connections to a FastCGI server by
using either NOTE_LOWAT flag of the kqueue method, or the SO_SNDLOWAT
socket option, with the specified size.

This directive is ignored on Linux, Solaris, and Windows.

Nginx, Inc. p.155 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi send timeout

Syntax: fastcgi_send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a request to the FastCGI server. The
timeout is set only between two successive write operations, not for the
transmission of the whole request. If the FastCGI server does not receive
anything within this time, the connection is closed.

fastcgi socket keepalive

Syntax: fastcgi_socket_keepalive on | off;

Default off

Context: http, server, location
This directive appeared in version 1.15.6.

Configures the “TCP keepalive” behavior for outgoing connections to a
FastCGI server. By default, the operating system’s settings are in effect for
the socket. If the directive is set to the value “on”, the SO_KEEPALIVE socket
option is turned on for the socket.

fastcgi split path info

Syntax: fastcgi_split_path_info regex;

Default —

Context: location

Defines a regular expression that captures a value for the $fastcgi path info
variable. The regular expression should have two captures: the first becomes
a value of the $fastcgi script name variable, the second becomes a value of the
$fastcgi path info variable. For example, with these settings

location ~ ^(.+\.php)(.*)$ {
fastcgi_split_path_info ^(.+\.php)(.*)$;
fastcgi_param SCRIPT_FILENAME /path/to/php$fastcgi_script_name;
fastcgi_param PATH_INFO $fastcgi_path_info;

and the“/show.php/article/0001”request, the SCRIPT_FILENAME
parameter will be equal to “/path/to/php/show.php”, and the PATH_-
INFO parameter will be equal to “/article/0001”.

fastcgi store

Syntax: fastcgi_store on | off | string;

Default off

Context: http, server, location

Enables saving of files to a disk. The on parameter saves files with paths
corresponding to the directives alias or root. The off parameter disables

Nginx, Inc. p.156 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

saving of files. In addition, the file name can be set explicitly using the string
with variables:

fastcgi_store /data/www$original_uri;

The modification time of files is set according to the received
Last-Modified response header field. The response is first written to a
temporary file, and then the file is renamed. Starting from version 0.8.9,
temporary files and the persistent store can be put on different file systems.
However, be aware that in this case a file is copied across two file systems
instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by
the fastcgi temp path directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files,
e.g.:

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

fastcgi_pass backend:9000;
...

fastcgi_store on;
fastcgi_store_access user:rw group:rw all:r;
fastcgi_temp_path /data/temp;

alias /data/www/;
}

fastcgi store access

Syntax: fastcgi_store_access users:permissions . . . ;

Default user:rw

Context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

fastcgi_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user
permissions may be omitted:

fastcgi_store_access group:rw all:r;

Nginx, Inc. p.157 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

fastcgi temp file write size

Syntax: fastcgi_temp_file_write_size size;

Default 8k|16k

Context: http, server, location

Limits the size of data written to a temporary file at a time, when buffering
of responses from the FastCGI server to temporary files is enabled. By default,
size is limited by two buffers set by the fastcgi buffer size and fastcgi buffers
directives. The maximum size of a temporary file is set by the fastcgi max -
temp file size directive.

fastcgi temp path

Syntax: fastcgi_temp_path path [level1 [level2 [level3]]];

Default fastcgi_temp

Context: http, server, location

Defines a directory for storing temporary files with data received from
FastCGI servers. Up to three-level subdirectory hierarchy can be used
underneath the specified directory. For example, in the following configuration

fastcgi_temp_path /spool/nginx/fastcgi_temp 1 2;

a temporary file might look like this:

/spool/nginx/fastcgi_temp/7/45/00000123457

See also the use_temp_path parameter of the fastcgi cache path
directive.

2.14.4 Parameters Passed to a FastCGI Server

HTTP request header fields are passed to a FastCGI server as parameters.
In applications and scripts running as FastCGI servers, these parameters
are usually made available as environment variables. For example, the
User-Agent header field is passed as the HTTP_USER_AGENT parameter.
In addition to HTTP request header fields, it is possible to pass arbitrary
parameters using the fastcgi param directive.

2.14.5 Embedded Variables

The ngx_http_fastcgi_module module supports embedded variables
that can be used to set parameters using the fastcgi param directive:

$fastcgi script name
request URI or, if a URI ends with a slash, request URI with an
index file name configured by the fastcgi index directive appended to it.

Nginx, Inc. p.158 of 563

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FASTCGI MODULE

This variable can be used to set the SCRIPT_FILENAME and PATH_-
TRANSLATED parameters that determine the script name in PHP. For
example, for the “/info/” request with the following directives

fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;

the SCRIPT_FILENAME parameter will be equal to “/home/www/
scripts/php/info/index.php”.
When using the fastcgi split path info directive, the $fastcgi script name
variable equals the value of the first capture set by the directive.

$fastcgi path info
the value of the second capture set by the fastcgi split path info
directive. This variable can be used to set the PATH_INFO parameter.

Nginx, Inc. p.159 of 563

CHAPTER 2. HTTP SERVER MODULES 2.15. MODULE NGX HTTP FLV MODULE

2.15 Module ngx http flv module

2.15.1 Summary . 160
2.15.2 Example Configuration 160
2.15.3 Directives . 160

flv . 160

2.15.1 Summary

The ngx_http_flv_module module provides pseudo-streaming server-
side support for Flash Video (FLV) files.

It handles requests with the start argument in the request URI’s query
string specially, by sending back the contents of a file starting from the
requested byte offset and with the prepended FLV header.

This module is not built by default, it should be enabled with the
--with-http_flv_module configuration parameter.

2.15.2 Example Configuration

location ~ \.flv$ {
flv;

}

2.15.3 Directives

flv

Syntax: flv;

Default —

Context: location

Turns on module processing in a surrounding location.

Nginx, Inc. p.160 of 563

CHAPTER 2. HTTP SERVER MODULES 2.16. MODULE NGX HTTP GEO MODULE

2.16 Module ngx http geo module

2.16.1 Summary . 161
2.16.2 Example Configuration 161
2.16.3 Directives . 161

geo . 161

2.16.1 Summary

The ngx_http_geo_module module creates variables with values
depending on the client IP address.

2.16.2 Example Configuration

geo $geo {
default 0;

127.0.0.1 2;
192.168.1.0/24 1;
10.1.0.0/16 1;

::1 2;
2001:0db8::/32 1;

}

2.16.3 Directives

geo

Syntax: geo [$address] $variable { . . . }
Default —

Context: http

Describes the dependency of values of the specified variable on the client
IP address. By default, the address is taken from the $remote addr variable,
but it can also be taken from another variable (0.7.27), for example:

geo $arg_remote_addr $geo {
...;

}

Since variables are evaluated only when used, the mere existence of even
a large number of declared “geo” variables does not cause any extra costs for
request processing.

If the value of a variable does not represent a valid IP address then the
“255.255.255.255” address is used.

Addresses are specified either as prefixes in CIDR notation (including
individual addresses) or as ranges (0.7.23).

Nginx, Inc. p.161 of 563

CHAPTER 2. HTTP SERVER MODULES 2.16. MODULE NGX HTTP GEO MODULE

IPv6 prefixes are supported starting from versions 1.3.10 and 1.2.7.

The following special parameters are also supported:

delete
deletes the specified network (0.7.23).

default
a value set to the variable if the client address does not match any of
the specified addresses. When addresses are specified in CIDR notation,
“0.0.0.0/0” and “::/0” can be used instead of default. When
default is not specified, the default value will be an empty string.

include
includes a file with addresses and values. There can be several inclusions.

proxy
defines trusted addresses (0.8.7, 0.7.63). When a request comes from a
trusted address, an address from the X-Forwarded-For request header
field will be used instead. In contrast to the regular addresses, trusted
addresses are checked sequentially.

Trusted IPv6 addresses are supported starting from versions 1.3.0 and
1.2.1.

proxy_recursive
enables recursive address search (1.3.0, 1.2.1). If recursive search is
disabled then instead of the original client address that matches one of
the trusted addresses, the last address sent in X-Forwarded-For will
be used. If recursive search is enabled then instead of the original client
address that matches one of the trusted addresses, the last non-trusted
address sent in X-Forwarded-For will be used.

ranges
indicates that addresses are specified as ranges (0.7.23). This parameter
should be the first. To speed up loading of a geo base, addresses should
be put in ascending order.

Example:

geo $country {
default ZZ;
include conf/geo.conf;
delete 127.0.0.0/16;
proxy 192.168.100.0/24;
proxy 2001:0db8::/32;

127.0.0.0/24 US;
127.0.0.1/32 RU;
10.1.0.0/16 RU;
192.168.1.0/24 UK;

}

The conf/geo.conf file could contain the following lines:

Nginx, Inc. p.162 of 563

CHAPTER 2. HTTP SERVER MODULES 2.16. MODULE NGX HTTP GEO MODULE

10.2.0.0/16 RU;
192.168.2.0/24 RU;

A value of the most specific match is used. For example, for the 127.0.0.1
address the value “RU” will be chosen, not “US”.

Example with ranges:

geo $country {
ranges;
default ZZ;
127.0.0.0-127.0.0.0 US;
127.0.0.1-127.0.0.1 RU;
127.0.0.1-127.0.0.255 US;
10.1.0.0-10.1.255.255 RU;
192.168.1.0-192.168.1.255 UK;

}

Nginx, Inc. p.163 of 563

CHAPTER 2. HTTP SERVER MODULES 2.17. MODULE NGX HTTP GEOIP MODULE

2.17 Module ngx http geoip module

2.17.1 Summary . 164
2.17.2 Example Configuration 164
2.17.3 Directives . 164

geoip country . 164
geoip city . 165
geoip org . 166
geoip proxy . 166
geoip proxy recursive . 166

2.17.1 Summary

The ngx_http_geoip_module module (0.8.6+) creates variables with
values depending on the client IP address, using the precompiled MaxMind
databases.

When using the databases with IPv6 support (1.3.12, 1.2.7), IPv4 addresses
are looked up as IPv4-mapped IPv6 addresses.

This module is not built by default, it should be enabled with the
--with-http_geoip_module configuration parameter.

This module requires the MaxMind GeoIP library.

2.17.2 Example Configuration

http {
geoip_country GeoIP.dat;
geoip_city GeoLiteCity.dat;
geoip_proxy 192.168.100.0/24;
geoip_proxy 2001:0db8::/32;
geoip_proxy_recursive on;
...

2.17.3 Directives

geoip country

Syntax: geoip_country file;

Default —

Context: http

Specifies a database used to determine the country depending on the client
IP address. The following variables are available when using this database:

$geoip country code
two-letter country code, for example, “RU”, “US”.

$geoip country code3
three-letter country code, for example, “RUS”, “USA”.

Nginx, Inc. p.164 of 563

http://www.maxmind.com
http://www.maxmind.com/app/c

CHAPTER 2. HTTP SERVER MODULES 2.17. MODULE NGX HTTP GEOIP MODULE

$geoip country name
country name, for example, “Russian Federation”, “United
States”.

geoip city

Syntax: geoip_city file;

Default —

Context: http

Specifies a database used to determine the country, region, and city
depending on the client IP address. The following variables are available when
using this database:

$geoip area code
telephone area code (US only).

This variable may contain outdated information since the corresponding
database field is deprecated.

$geoip city continent code
two-letter continent code, for example, “EU”, “NA”.

$geoip city country code
two-letter country code, for example, “RU”, “US”.

$geoip city country code3
three-letter country code, for example, “RUS”, “USA”.

$geoip city country name
country name, for example, “Russian Federation”, “United
States”.

$geoip dma code
DMA region code in US (also known as “metro code”), according to the
geotargeting in Google AdWords API.

$geoip latitude
latitude.

$geoip longitude
longitude.

$geoip region
two-symbol country region code (region, territory, state, province, federal
land and the like), for example, “48”, “DC”.

$geoip region name
country region name (region, territory, state, province, federal land and
the like), for example, “Moscow City”, “District of Columbia”.

$geoip city
city name, for example, “Moscow”, “Washington”.

$geoip postal code
postal code.

Nginx, Inc. p.165 of 563

https://developers.google.com/adwords/api/docs/appendix/cities-DMAregions

CHAPTER 2. HTTP SERVER MODULES 2.17. MODULE NGX HTTP GEOIP MODULE

geoip org

Syntax: geoip_org file;

Default —

Context: http
This directive appeared in version 1.0.3.

Specifies a database used to determine the organization depending on the
client IP address. The following variable is available when using this database:

$geoip org
organization name, for example, “The University of Melbourne”.

geoip proxy

Syntax: geoip_proxy address | CIDR;

Default —

Context: http
This directive appeared in versions 1.3.0 and 1.2.1.

Defines trusted addresses. When a request comes from a trusted address,
an address from the X-Forwarded-For request header field will be used
instead.

geoip proxy recursive

Syntax: geoip_proxy_recursive on | off;

Default off

Context: http
This directive appeared in versions 1.3.0 and 1.2.1.

If recursive search is disabled then instead of the original client address
that matches one of the trusted addresses, the last address sent in
X-Forwarded-For will be used. If recursive search is enabled then instead
of the original client address that matches one of the trusted addresses, the
last non-trusted address sent in X-Forwarded-For will be used.

Nginx, Inc. p.166 of 563

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GRPC MODULE

2.18 Module ngx http grpc module

2.18.1 Summary . 167
2.18.2 Example Configuration 167
2.18.3 Directives . 168

grpc bind . 168
grpc buffer size . 168
grpc connect timeout . 168
grpc hide header . 169
grpc ignore headers . 169
grpc intercept errors . 169
grpc next upstream . 169
grpc next upstream timeout 170
grpc next upstream tries 171
grpc pass . 171
grpc pass header . 171
grpc read timeout . 172
grpc send timeout . 172
grpc set header . 172
grpc socket keepalive . 172
grpc ssl certificate . 173
grpc ssl certificate key 173
grpc ssl ciphers . 173
grpc ssl conf command 173
grpc ssl crl . 174
grpc ssl name . 174
grpc ssl password file . 174
grpc ssl protocols . 174
grpc ssl server name . 174
grpc ssl session reuse . 175
grpc ssl trusted certificate 175
grpc ssl verify . 175
grpc ssl verify depth . 175

2.18.1 Summary

The ngx_http_grpc_module module allows passing requests to a gRPC
server (1.13.10). The module requires the ngx http v2 module module.

2.18.2 Example Configuration

server {
listen 9000;

http2 on;

location / {
grpc_pass 127.0.0.1:9000;

Nginx, Inc. p.167 of 563

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GRPC MODULE

}
}

2.18.3 Directives

grpc bind

Syntax: grpc_bind address [transparent] | off;

Default —

Context: http, server, location

Makes outgoing connections to a gRPC server originate from the specified
local IP address with an optional port. Parameter value can contain variables.
The special value off cancels the effect of the grpc_bind directive inherited
from the previous configuration level, which allows the system to auto-assign
the local IP address and port.

The transparent parameter allows outgoing connections to a gRPC
server originate from a non-local IP address, for example, from a real IP address
of a client:

grpc_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run nginx
worker processes with the superuser privileges. On Linux it is not required as if
the transparent parameter is specified, worker processes inherit the CAP_-
NET_RAW capability from the master process. It is also necessary to configure
kernel routing table to intercept network traffic from the gRPC server.

grpc buffer size

Syntax: grpc_buffer_size size;

Default 4k|8k

Context: http, server, location

Sets the size of the buffer used for reading the response received from the
gRPC server. The response is passed to the client synchronously, as soon as it
is received.

grpc connect timeout

Syntax: grpc_connect_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for establishing a connection with a gRPC server. It
should be noted that this timeout cannot usually exceed 75 seconds.

Nginx, Inc. p.168 of 563

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GRPC MODULE

grpc hide header

Syntax: grpc_hide_header field;

Default —

Context: http, server, location

By default, nginx does not pass the header fields Date, Server, and
X-Accel-... from the response of a gRPC server to a client. The grpc_-
hide_header directive sets additional fields that will not be passed. If, on
the contrary, the passing of fields needs to be permitted, the grpc pass header
directive can be used.

grpc ignore headers

Syntax: grpc_ignore_headers field . . . ;

Default —

Context: http, server, location

Disables processing of certain response header fields from the gRPC
server. The following fields can be ignored: X-Accel-Redirect and
X-Accel-Charset.

If not disabled, processing of these header fields has the following effect:

• X-Accel-Redirect performs an internal redirect to the specified URI;

• X-Accel-Charset sets the desired charset of a response.

grpc intercept errors

Syntax: grpc_intercept_errors on | off;

Default off

Context: http, server, location

Determines whether gRPC server responses with codes greater than or
equal to 300 should be passed to a client or be intercepted and redirected to
nginx for processing with the error page directive.

grpc next upstream

Syntax: grpc_next_upstream error | timeout | invalid_header |
http_500 | http_502 | http_503 | http_504 | http_403 |
http_404 | http_429 | non_idempotent | off . . . ;

Default error timeout

Context: http, server, location

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

Nginx, Inc. p.169 of 563

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GRPC MODULE

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_header
a server returned an empty or invalid response;

http_500
a server returned a response with the code 500;

http_502
a server returned a response with the code 502;

http_503
a server returned a response with the code 503;

http_504
a server returned a response with the code 504;

http_403
a server returned a response with the code 403;

http_404
a server returned a response with the code 404;

http_429
a server returned a response with the code 429;

non_idempotent
normally, requests with a non-idempotent method (POST, LOCK, PATCH)
are not passed to the next server if a request has been sent to an upstream
server; enabling this option explicitly allows retrying such requests;

off
disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of
communication with a server. The cases of error, timeout and invalid_-
header are always considered unsuccessful attempts, even if they are not
specified in the directive. The cases of http_500, http_502, http_503,
http_504, and http_429 are considered unsuccessful attempts only if they
are specified in the directive. The cases of http_403 and http_404 are
never considered unsuccessful attempts.

Passing a request to the next server can be limited by the number of tries
and by time.

grpc next upstream timeout

Syntax: grpc_next_upstream_timeout time;

Default 0

Context: http, server, location

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

Nginx, Inc. p.170 of 563

https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.2

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GRPC MODULE

grpc next upstream tries

Syntax: grpc_next_upstream_tries number;

Default 0

Context: http, server, location

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

grpc pass

Syntax: grpc_pass address;

Default —

Context: location, if in location

Sets the gRPC server address. The address can be specified as a domain
name or IP address, and a port:

grpc_pass localhost:9000;

or as a UNIX-domain socket path:

grpc_pass unix:/tmp/grpc.socket;

Alternatively, the “grpc://” scheme can be used:

grpc_pass grpc://127.0.0.1:9000;

To use gRPC over SSL, the “grpcs://” scheme should be used:

grpc_pass grpcs://127.0.0.1:443;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

Parameter value can contain variables (1.17.8). In this case, if an address is
specified as a domain name, the name is searched among the described server
groups, and, if not found, is determined using a resolver.

grpc pass header

Syntax: grpc_pass_header field;

Default —

Context: http, server, location

Permits passing otherwise disabled header fields from a gRPC server to a
client.

Nginx, Inc. p.171 of 563

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GRPC MODULE

grpc read timeout

Syntax: grpc_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the gRPC server. The
timeout is set only between two successive read operations, not for the
transmission of the whole response. If the gRPC server does not transmit
anything within this time, the connection is closed.

grpc send timeout

Syntax: grpc_send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a request to the gRPC server. The timeout
is set only between two successive write operations, not for the transmission
of the whole request. If the gRPC server does not receive anything within this
time, the connection is closed.

grpc set header

Syntax: grpc_set_header field value;

Default Content-Length $content_length

Context: http, server, location

Allows redefining or appending fields to the request header passed to the
gRPC server. The value can contain text, variables, and their combinations.
These directives are inherited from the previous configuration level if and only
if there are no grpc_set_header directives defined on the current level.

If the value of a header field is an empty string then this field will not be
passed to a gRPC server:

grpc_set_header Accept-Encoding "";

grpc socket keepalive

Syntax: grpc_socket_keepalive on | off;

Default off

Context: http, server, location
This directive appeared in version 1.15.6.

Configures the “TCP keepalive” behavior for outgoing connections to a
gRPC server. By default, the operating system’s settings are in effect for the
socket. If the directive is set to the value “on”, the SO_KEEPALIVE socket
option is turned on for the socket.

Nginx, Inc. p.172 of 563

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GRPC MODULE

grpc ssl certificate

Syntax: grpc_ssl_certificate file;

Default —

Context: http, server, location

Specifies a file with the certificate in the PEM format used for
authentication to a gRPC SSL server.

Since version 1.21.0, variables can be used in the file name.

grpc ssl certificate key

Syntax: grpc_ssl_certificate_key file;

Default —

Context: http, server, location

Specifies a file with the secret key in the PEM format used for
authentication to a gRPC SSL server.

The value engine:name:id can be specified instead of the file, which loads
a secret key with a specified id from the OpenSSL engine name.

Since version 1.21.0, variables can be used in the file name.

grpc ssl ciphers

Syntax: grpc_ssl_ciphers ciphers;

Default DEFAULT

Context: http, server, location

Specifies the enabled ciphers for requests to a gRPC SSL server. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

grpc ssl conf command

Syntax: grpc_ssl_conf_command name value;

Default —

Context: http, server, location
This directive appeared in version 1.19.4.

Sets arbitrary OpenSSL configuration commands when establishing a
connection with the gRPC SSL server.

The directive is supported when using OpenSSL 1.0.2 or higher.

Several grpc_ssl_conf_command directives can be specified on the
same level. These directives are inherited from the previous configuration level
if and only if there are no grpc_ssl_conf_command directives defined on
the current level.

Nginx, Inc. p.173 of 563

https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GRPC MODULE

Note that configuring OpenSSL directly might result in unexpected
behavior.

grpc ssl crl

Syntax: grpc_ssl_crl file;

Default —

Context: http, server, location

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify the certificate of the gRPC SSL server.

grpc ssl name

Syntax: grpc_ssl_name name;

Default host from grpc_pass

Context: http, server, location

Allows overriding the server name used to verify the certificate of the gRPC
SSL server and to be passed through SNI when establishing a connection with
the gRPC SSL server.

By default, the host part from grpc pass is used.

grpc ssl password file

Syntax: grpc_ssl_password_file file;

Default —

Context: http, server, location

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

grpc ssl protocols

Syntax: grpc_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1]

[TLSv1.2] [TLSv1.3];

Default TLSv1 TLSv1.1 TLSv1.2 TLSv1.3

Context: http, server, location

Enables the specified protocols for requests to a gRPC SSL server.

The TLSv1.3 parameter is used by default since 1.23.4.

grpc ssl server name

Syntax: grpc_ssl_server_name on | off;

Default off

Context: http, server, location

Nginx, Inc. p.174 of 563

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GRPC MODULE

Enables or disables passing of the server name through TLS Server Name
Indication extension (SNI, RFC 6066) when establishing a connection with the
gRPC SSL server.

grpc ssl session reuse

Syntax: grpc_ssl_session_reuse on | off;

Default on

Context: http, server, location

Determines whether SSL sessions can be reused when working with
the gRPC server. If the errors “SSL3_GET_FINISHED:digest check
failed” appear in the logs, try disabling session reuse.

grpc ssl trusted certificate

Syntax: grpc_ssl_trusted_certificate file;

Default —

Context: http, server, location

Specifies a file with trusted CA certificates in the PEM format used to
verify the certificate of the gRPC SSL server.

grpc ssl verify

Syntax: grpc_ssl_verify on | off;

Default off

Context: http, server, location

Enables or disables verification of the gRPC SSL server certificate.

grpc ssl verify depth

Syntax: grpc_ssl_verify_depth number;

Default 1

Context: http, server, location

Sets the verification depth in the gRPC SSL server certificates chain.

Nginx, Inc. p.175 of 563

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 2. HTTP SERVER MODULES 2.19. MODULE NGX HTTP GUNZIP MODULE

2.19 Module ngx http gunzip module

2.19.1 Summary . 176
2.19.2 Example Configuration 176
2.19.3 Directives . 176

gunzip . 176
gunzip buffers . 176

2.19.1 Summary

The ngx_http_gunzip_module module is a filter that decompresses
responses with “Content-Encoding: gzip” for clients that do not
support“gzip”encoding method. The module will be useful when it is desirable
to store data compressed to save space and reduce I/O costs.

This module is not built by default, it should be enabled with the
--with-http_gunzip_module configuration parameter.

2.19.2 Example Configuration

location /storage/ {
gunzip on;
...

}

2.19.3 Directives

gunzip

Syntax: gunzip on | off;

Default off

Context: http, server, location

Enables or disables decompression of gzipped responses for clients that lack
gzip support. If enabled, the following directives are also taken into account
when determining if clients support gzip: gzip http version, gzip proxied, and
gzip disable. See also the gzip vary directive.

gunzip buffers

Syntax: gunzip_buffers number size;

Default 32 4k|16 8k

Context: http, server, location

Sets the number and size of buffers used to decompress a response. By
default, the buffer size is equal to one memory page. This is either 4K or 8K,
depending on a platform.

Nginx, Inc. p.176 of 563

CHAPTER 2. HTTP SERVER MODULES 2.20. MODULE NGX HTTP GZIP MODULE

2.20 Module ngx http gzip module

2.20.1 Summary . 177
2.20.2 Example Configuration 177
2.20.3 Directives . 177

gzip . 177
gzip buffers . 178
gzip comp level . 178
gzip disable . 178
gzip http version . 178
gzip min length . 178
gzip proxied . 179
gzip types . 179
gzip vary . 180

2.20.4 Embedded Variables . 180

2.20.1 Summary

The ngx_http_gzip_module module is a filter that compresses
responses using the “gzip” method. This often helps to reduce the size of
transmitted data by half or even more.

When using the SSL/TLS protocol, compressed responses may be subject
to BREACH attacks.

2.20.2 Example Configuration

gzip on;
gzip_min_length 1000;
gzip_proxied expired no-cache no-store private auth;
gzip_types text/plain application/xml;

The $gzip ratio variable can be used to log the achieved compression ratio.

2.20.3 Directives

gzip

Syntax: gzip on | off;

Default off

Context: http, server, location, if in location

Enables or disables gzipping of responses.

Nginx, Inc. p.177 of 563

https://en.wikipedia.org/wiki/BREACH

CHAPTER 2. HTTP SERVER MODULES 2.20. MODULE NGX HTTP GZIP MODULE

gzip buffers

Syntax: gzip_buffers number size;

Default 32 4k|16 8k

Context: http, server, location

Sets the number and size of buffers used to compress a response. By default,
the buffer size is equal to one memory page. This is either 4K or 8K, depending
on a platform.

Until version 0.7.28, four 4K or 8K buffers were used by default.

gzip comp level

Syntax: gzip_comp_level level;

Default 1

Context: http, server, location

Sets a gzip compression level of a response. Acceptable values are in the
range from 1 to 9.

gzip disable

Syntax: gzip_disable regex . . . ;

Default —

Context: http, server, location
This directive appeared in version 0.6.23.

Disables gzipping of responses for requests with User-Agent header fields
matching any of the specified regular expressions.

The special mask “msie6” (0.7.12) corresponds to the regular expression
“MSIE [4-6]\.”, but works faster. Starting from version 0.8.11, “MSIE
6.0; ...SV1” is excluded from this mask.

gzip http version

Syntax: gzip_http_version 1.0 | 1.1;

Default 1.1

Context: http, server, location

Sets the minimum HTTP version of a request required to compress a
response.

gzip min length

Syntax: gzip_min_length length;

Default 20

Context: http, server, location

Sets the minimum length of a response that will be gzipped. The length is
determined only from the Content-Length response header field.

Nginx, Inc. p.178 of 563

CHAPTER 2. HTTP SERVER MODULES 2.20. MODULE NGX HTTP GZIP MODULE

gzip proxied

Syntax: gzip_proxied off | expired | no-cache | no-store | private |
no_last_modified | no_etag | auth | any . . . ;

Default off

Context: http, server, location

Enables or disables gzipping of responses for proxied requests depending on
the request and response. The fact that the request is proxied is determined
by the presence of the Via request header field. The directive accepts multiple
parameters:

off
disables compression for all proxied requests, ignoring other parameters;

expired
enables compression if a response header includes the Expires field
with a value that disables caching;

no-cache
enables compression if a response header includes the Cache-Control
field with the “no-cache” parameter;

no-store
enables compression if a response header includes the Cache-Control
field with the “no-store” parameter;

private
enables compression if a response header includes the Cache-Control
field with the “private” parameter;

no_last_modified
enables compression if a response header does not include the
Last-Modified field;

no_etag
enables compression if a response header does not include the ETag field;

auth
enables compression if a request header includes the Authorization
field;

any
enables compression for all proxied requests.

gzip types

Syntax: gzip_types mime-type . . . ;

Default text/html

Context: http, server, location

Enables gzipping of responses for the specified MIME types in addition
to “text/html”. The special value “*” matches any MIME type (0.8.29).
Responses with the “text/html” type are always compressed.

Nginx, Inc. p.179 of 563

CHAPTER 2. HTTP SERVER MODULES 2.20. MODULE NGX HTTP GZIP MODULE

gzip vary

Syntax: gzip_vary on | off;

Default off

Context: http, server, location

Enables or disables inserting the Vary: Accept-Encoding response
header field if the directives gzip, gzip static, or gunzip are active.

2.20.4 Embedded Variables

$gzip ratio
achieved compression ratio, computed as the ratio between the original
and compressed response sizes.

Nginx, Inc. p.180 of 563

CHAPTER 2. HTTP SERVER MODULES 2.21. MODULE NGX HTTP GZIP STATIC MODULE

2.21 Module ngx http gzip static module

2.21.1 Summary . 181
2.21.2 Example Configuration 181
2.21.3 Directives . 181

gzip static . 181

2.21.1 Summary

The ngx_http_gzip_static_module module allows sending precom-
pressed files with the “.gz” filename extension instead of regular files.

This module is not built by default, it should be enabled with the
--with-http_gzip_static_module configuration parameter.

2.21.2 Example Configuration

gzip_static on;
gzip_proxied expired no-cache no-store private auth;

2.21.3 Directives

gzip static

Syntax: gzip_static on | off | always;

Default off

Context: http, server, location

Enables (“on”) or disables (“off”) checking the existence of precompressed
files. The following directives are also taken into account: gzip http version,
gzip proxied, gzip disable, and gzip vary.

With the “always” value (1.3.6), gzipped file is used in all cases, without
checking if the client supports it. It is useful if there are no uncompressed files
on the disk anyway or the ngx http gunzip module is used.

The files can be compressed using the gzip command, or any other
compatible one. It is recommended that the modification date and time of
original and compressed files be the same.

Nginx, Inc. p.181 of 563

CHAPTER 2. HTTP SERVER MODULES 2.22. MODULE NGX HTTP HEADERS MODULE

2.22 Module ngx http headers module

2.22.1 Summary . 182
2.22.2 Example Configuration 182
2.22.3 Directives . 182

add header . 182
add trailer . 182
expires . 183

2.22.1 Summary

The ngx_http_headers_module module allows adding the Expires
and Cache-Control header fields, and arbitrary fields, to a response header.

2.22.2 Example Configuration

expires 24h;
expires modified +24h;
expires @24h;
expires 0;
expires -1;
expires epoch;
expires $expires;
add_header Cache-Control private;

2.22.3 Directives

add header

Syntax: add_header name value [always];

Default —

Context: http, server, location, if in location

Adds the specified field to a response header provided that the response
code equals 200, 201 (1.3.10), 204, 206, 301, 302, 303, 304, 307 (1.1.16, 1.0.13),
or 308 (1.13.0). Parameter value can contain variables.

There could be several add_header directives. These directives are
inherited from the previous configuration level if and only if there are no add_-
header directives defined on the current level.

If the always parameter is specified (1.7.5), the header field will be added
regardless of the response code.

add trailer

Syntax: add_trailer name value [always];

Default —

Context: http, server, location, if in location
This directive appeared in version 1.13.2.

Nginx, Inc. p.182 of 563

CHAPTER 2. HTTP SERVER MODULES 2.22. MODULE NGX HTTP HEADERS MODULE

Adds the specified field to the end of a response provided that the response
code equals 200, 201, 206, 301, 302, 303, 307, or 308. Parameter value can
contain variables.

There could be several add_trailer directives. These directives are
inherited from the previous configuration level if and only if there are no add_-
trailer directives defined on the current level.

If the always parameter is specified the specified field will be added
regardless of the response code.

expires

Syntax: expires [modified] time;

Syntax: expires epoch | max | off;

Default off

Context: http, server, location, if in location

Enables or disables adding or modifying the Expires and
Cache-Control response header fields provided that the response code
equals 200, 201 (1.3.10), 204, 206, 301, 302, 303, 304, 307 (1.1.16, 1.0.13), or
308 (1.13.0). The parameter can be a positive or negative time.

The time in the Expires field is computed as a sum of the current time
and time specified in the directive. If the modified parameter is used (0.7.0,
0.6.32) then the time is computed as a sum of the file’s modification time and
the time specified in the directive.

In addition, it is possible to specify a time of day using the“@”prefix (0.7.9,
0.6.34):

expires @15h30m;

The contents of the Cache-Control field depends on the sign of the
specified time:

• time is negative — Cache-Control: no-cache.

• time is positive or zero — Cache-Control: max-age=t, where t is
a time specified in the directive, in seconds.

The epoch parameter sets Expires to the value “Thu, 01 Jan 1970
00:00:01 GMT”, and Cache-Control to “no-cache”.

The max parameter sets Expires to the value “Thu, 31 Dec 2037
23:55:55 GMT”, and Cache-Control to 10 years.

The off parameter disables adding or modifying the Expires and
Cache-Control response header fields.

The last parameter value can contain variables (1.7.9):

map $sent_http_content_type $expires {
default off;
application/pdf 42d;
~image/ max;

}

Nginx, Inc. p.183 of 563

https://nginx.org/en/docs/syntax.html

CHAPTER 2. HTTP SERVER MODULES 2.22. MODULE NGX HTTP HEADERS MODULE

expires $expires;

Nginx, Inc. p.184 of 563

CHAPTER 2. HTTP SERVER MODULES 2.23. MODULE NGX HTTP HLS MODULE

2.23 Module ngx http hls module

2.23.1 Summary . 185
2.23.2 Example Configuration 185
2.23.3 Directives . 186

hls . 186
hls buffers . 186
hls forward args . 186
hls fragment . 187
hls mp4 buffer size . 187
hls mp4 max buffer size 188

2.23.1 Summary

The ngx_http_hls_module module provides HTTP Live Streaming
(HLS) server-side support for MP4 and MOV media files. Such files typically
have the .mp4, .m4v, .m4a, .mov, or .qt filename extensions. The module
supports H.264 video codec, AAC and MP3 audio codecs.

For each media file, two URIs are supported:

• A playlist URI with the“.m3u8”filename extension. The URI can accept
optional arguments:

– “start” and “end” define playlist boundaries in seconds (1.9.0).

– “offset” shifts an initial playback position to the time offset
in seconds (1.9.0). A positive value sets a time offset from the
beginning of the playlist. A negative value sets a time offset from
the end of the last fragment in the playlist.

– “len” defines the fragment length in seconds.

• A fragment URI with the “.ts” filename extension. The URI can accept
optional arguments:

– “start” and “end” define fragment boundaries in seconds.

This module is available as part of our commercial subscription.

2.23.2 Example Configuration

location / {
hls;
hls_fragment 5s;
hls_buffers 10 10m;
hls_mp4_buffer_size 1m;
hls_mp4_max_buffer_size 5m;
root /var/video/;

}

Nginx, Inc. p.185 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.23. MODULE NGX HTTP HLS MODULE

With this configuration, the following URIs are supported for the “/var¬
/video/test.mp4” file:

http://hls.example.com/test.mp4.m3u8?offset=1.000&start=1.000&end=2.200
http://hls.example.com/test.mp4.m3u8?len=8.000
http://hls.example.com/test.mp4.ts?start=1.000&end=2.200

2.23.3 Directives

hls

Syntax: hls;

Default —

Context: location

Turns on HLS streaming in the surrounding location.

hls buffers

Syntax: hls_buffers number size;

Default 8 2m

Context: http, server, location

Sets the maximum number and size of buffers that are used for reading and
writing data frames.

hls forward args

Syntax: hls_forward_args on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.12.

Adds arguments from a playlist request to URIs of fragments. This may
be useful for performing client authorization at the moment of requesting a
fragment, or when protecting an HLS stream with the ngx http secure link -
module module.

For example, if a client requests a playlist http://example.com/hls/
test.mp4.m3u8?a=1&b=2, the arguments a=1 and b=2 will be added to
URIs of fragments after the arguments start and end:

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:15
#EXT-X-PLAYLIST-TYPE:VOD

#EXTINF:9.333,
test.mp4.ts?start=0.000&end=9.333&a=1&b=2
#EXTINF:7.167,
test.mp4.ts?start=9.333&end=16.500&a=1&b=2
#EXTINF:5.416,
test.mp4.ts?start=16.500&end=21.916&a=1&b=2
#EXTINF:5.500,
test.mp4.ts?start=21.916&end=27.416&a=1&b=2

Nginx, Inc. p.186 of 563

CHAPTER 2. HTTP SERVER MODULES 2.23. MODULE NGX HTTP HLS MODULE

#EXTINF:15.167,
test.mp4.ts?start=27.416&end=42.583&a=1&b=2
#EXTINF:9.626,
test.mp4.ts?start=42.583&end=52.209&a=1&b=2

#EXT-X-ENDLIST

If an HLS stream is protected with the ngx http secure link module
module, $uri should not be used in the secure link md5 expression because
this will cause errors when requesting the fragments. Base URI should be used
instead of $uri ($hls uri in the example):

http {
...

map $uri $hls_uri {
~^(?<base_uri>.*).m3u8$ $base_uri;
~^(?<base_uri>.*).ts$ $base_uri;
default $uri;

}

server {
...

location /hls/ {
hls;
hls_forward_args on;

alias /var/videos/;

secure_link $arg_md5,$arg_expires;
secure_link_md5 "$secure_link_expires$hls_uri$remote_addr secret";

if ($secure_link = "") {
return 403;

}

if ($secure_link = "0") {
return 410;

}
}

}
}

hls fragment

Syntax: hls_fragment time;

Default 5s

Context: http, server, location

Defines the default fragment length for playlist URIs requested without the
“len” argument.

hls mp4 buffer size

Syntax: hls_mp4_buffer_size size;

Default 512k

Context: http, server, location

Sets the initial size of the buffer used for processing MP4 and MOV files.

Nginx, Inc. p.187 of 563

CHAPTER 2. HTTP SERVER MODULES 2.23. MODULE NGX HTTP HLS MODULE

hls mp4 max buffer size

Syntax: hls_mp4_max_buffer_size size;

Default 10m

Context: http, server, location

During metadata processing, a larger buffer may become necessary. Its size
cannot exceed the specified size, or else nginx will return the server error 500
Internal Server Error, and log the following message:

"/some/movie/file.mp4" mp4 moov atom is too large:
12583268, you may want to increase hls_mp4_max_buffer_size

Nginx, Inc. p.188 of 563

CHAPTER 2. HTTP SERVER MODULES 2.24. MODULE NGX HTTP IMAGE FILTER MODULE

2.24 Module ngx http image filter module

2.24.1 Summary . 189
2.24.2 Example Configuration 189
2.24.3 Directives . 190

image filter . 190
image filter buffer . 191
image filter interlace . 191
image filter jpeg quality 191
image filter sharpen . 191
image filter transparency 191
image filter webp quality 192

2.24.1 Summary

The ngx_http_image_filter_module module (0.7.54+) is a filter
that transforms images in JPEG, GIF, PNG, and WebP formats.

This module is not built by default, it should be enabled with the
--with-http_image_filter_module configuration parameter.

This module utilizes the libgd library. It is recommended to use the latest
available version of the library.

The WebP format support appeared in version 1.11.6. To transform
images in this format, the libgd library must be compiled with the WebP
support.

2.24.2 Example Configuration

location /img/ {
proxy_pass http://backend;
image_filter resize 150 100;
image_filter rotate 90;
error_page 415 = /empty;

}

location = /empty {
empty_gif;

}

Nginx, Inc. p.189 of 563

http://libgd.org

CHAPTER 2. HTTP SERVER MODULES 2.24. MODULE NGX HTTP IMAGE FILTER MODULE

2.24.3 Directives

image filter

Syntax: image_filter off;

Syntax: image_filter test;

Syntax: image_filter size;

Syntax: image_filter rotate 90 | 180 | 270;

Syntax: image_filter resize width height;

Syntax: image_filter crop width height;

Default off

Context: location

Sets the type of transformation to perform on images:

off
turns off module processing in a surrounding location.

test
ensures that responses are images in either JPEG, GIF, PNG, or WebP
format. Otherwise, the 415 Unsupported Media Type error is
returned.

size
outputs information about images in a JSON format, e.g.:

{ "img" : { "width": 100, "height": 100, "type": "gif" } }

In case of an error, the output is as follows:

{}

rotate 90|180|270
rotates images counter-clockwise by the specified number of degrees.
Parameter value can contain variables. This mode can be used either
alone or along with the resize and crop transformations.

resize width height
proportionally reduces an image to the specified sizes. To reduce by
only one dimension, another dimension can be specified as “-”. In case
of an error, the server will return code 415 Unsupported Media
Type. Parameter values can contain variables. When used along with
the rotate parameter, the rotation happens after reduction.

crop width height
proportionally reduces an image to the larger side size and crops
extraneous edges by another side. To reduce by only one dimension,
another dimension can be specified as “-”. In case of an error, the server
will return code 415 Unsupported Media Type. Parameter values
can contain variables. When used along with the rotate parameter,
the rotation happens before reduction.

Nginx, Inc. p.190 of 563

CHAPTER 2. HTTP SERVER MODULES 2.24. MODULE NGX HTTP IMAGE FILTER MODULE

image filter buffer

Syntax: image_filter_buffer size;

Default 1M

Context: http, server, location

Sets the maximum size of the buffer used for reading images. When the
size is exceeded the server returns error 415 Unsupported Media Type.

image filter interlace

Syntax: image_filter_interlace on | off;

Default off

Context: http, server, location
This directive appeared in version 1.3.15.

If enabled, final images will be interlaced. For JPEG, final images will be
in “progressive JPEG” format.

image filter jpeg quality

Syntax: image_filter_jpeg_quality quality;

Default 75

Context: http, server, location

Sets the desired quality of the transformed JPEG images. Acceptable values
are in the range from 1 to 100. Lesser values usually imply both lower image
quality and less data to transfer. The maximum recommended value is 95.
Parameter value can contain variables.

image filter sharpen

Syntax: image_filter_sharpen percent;

Default 0

Context: http, server, location

Increases sharpness of the final image. The sharpness percentage can
exceed 100. The zero value disables sharpening. Parameter value can contain
variables.

image filter transparency

Syntax: image_filter_transparency on|off;

Default on

Context: http, server, location

Defines whether transparency should be preserved when transforming
GIF images or PNG images with colors specified by a palette. The loss
of transparency results in images of a better quality. The alpha channel
transparency in PNG is always preserved.

Nginx, Inc. p.191 of 563

CHAPTER 2. HTTP SERVER MODULES 2.24. MODULE NGX HTTP IMAGE FILTER MODULE

image filter webp quality

Syntax: image_filter_webp_quality quality;

Default 80

Context: http, server, location
This directive appeared in version 1.11.6.

Sets the desired quality of the transformed WebP images. Acceptable values
are in the range from 1 to 100. Lesser values usually imply both lower image
quality and less data to transfer. Parameter value can contain variables.

Nginx, Inc. p.192 of 563

CHAPTER 2. HTTP SERVER MODULES 2.25. MODULE NGX HTTP INDEX MODULE

2.25 Module ngx http index module

2.25.1 Summary . 193
2.25.2 Example Configuration 193
2.25.3 Directives . 193

index . 193

2.25.1 Summary

The ngx_http_index_module module processes requests ending with
the slash character (‘/’). Such requests can also be processed by the ngx -
http autoindex module and ngx http random index module modules.

2.25.2 Example Configuration

location / {
index index.$geo.html index.html;

}

2.25.3 Directives

index

Syntax: index file . . . ;

Default index.html

Context: http, server, location

Defines files that will be used as an index. The file name can contain
variables. Files are checked in the specified order. The last element of the list
can be a file with an absolute path. Example:

index index.$geo.html index.0.html /index.html;

It should be noted that using an index file causes an internal redirect, and
the request can be processed in a different location. For example, with the
following configuration:

location = / {
index index.html;

}

location / {
...

}

a “/” request will actually be processed in the second location as “/
index.html”.

Nginx, Inc. p.193 of 563

CHAPTER 2. HTTP SERVER MODULES 2.26. MODULE NGX HTTP INT ... MODULE

2.26 Module ngx http internal redirect mod-

ule

2.26.1 Summary . 194
2.26.2 Example Configuration 194
2.26.3 Directives . 194

internal redirect . 194

2.26.1 Summary

The ngx_http_internal_redirect_module module (1.23.4) allows
making an internal redirect. In contrast to rewriting URIs, the redirection
is made after checking request and connection processing limits, and access
limits.

This module is available as part of our commercial subscription.

2.26.2 Example Configuration

limit_req_zone $jwt_claim_sub zone=jwt_sub:10m rate=1r/s;

server {
location / {

auth_jwt "realm";
auth_jwt_key_file key.jwk;

internal_redirect @rate_limited;
}

location @rate_limited {
internal;

limit_req zone=jwt_sub burst=10;
proxy_pass http://backend;

}
}

The example implements per-user rate limiting. Implementation without
internal redirect is vulnerable to DoS attacks by unsigned JWTs, as normally
the limit req check is performed before auth jwt check. Using internal redirect
allows reordering these checks.

2.26.3 Directives

internal redirect

Syntax: internal_redirect uri;

Default —

Context: server, location

Nginx, Inc. p.194 of 563

https://nginx.com/products/
https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.2

CHAPTER 2. HTTP SERVER MODULES 2.26. MODULE NGX HTTP INT ... MODULE

Sets the URI for internal redirection of the request. It is also possible to
use a named location instead of the URI. The uri value can contain variables.
If the uri value is empty, then the redirect will not be made.

Nginx, Inc. p.195 of 563

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP JS MODULE

2.27 Module ngx http js module

2.27.1 Summary . 196
2.27.2 Example Configuration 196
2.27.3 Directives . 198

js body filter . 198
js content . 199
js context reuse . 199
js engine . 199
js fetch buffer size . 200
js fetch ciphers . 200
js fetch max response buffer size 200
js fetch protocols . 200
js fetch timeout . 200
js fetch trusted certificate 201
js fetch verify . 201
js fetch verify depth . 201
js header filter . 201
js import . 201
js include . 202
js path . 202
js periodic . 203
js preload object . 203
js set . 204
js shared dict zone . 204
js var . 205

2.27.4 Request Argument . 205

2.27.1 Summary

The ngx_http_js_module module is used to implement location and
variable handlers in njs — a subset of the JavaScript language.

Download and install instructions are available here.

2.27.2 Example Configuration

The example works since 0.4.0.

http {
js_import http.js;

js_set $foo http.foo;
js_set $summary http.summary;
js_set $hash http.hash;

resolver 10.0.0.1;

server {
listen 8000;

location / {

Nginx, Inc. p.196 of 563

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP JS MODULE

add_header X-Foo $foo;
js_content http.baz;

}

location = /summary {
return 200 $summary;

}

location = /hello {
js_content http.hello;

}

since 0.7.0
location = /fetch {

js_content http.fetch;
js_fetch_trusted_certificate /path/to/ISRG_Root_X1.pem;

}

since 0.7.0
location = /crypto {

add_header Hash $hash;
return 200;

}
}

}

The http.js file:

function foo(r) {
r.log("hello from foo() handler");
return "foo";

}

function summary(r) {
var a, s, h;

s = "JS summary\n\n";

s += "Method: " + r.method + "\n";
s += "HTTP version: " + r.httpVersion + "\n";
s += "Host: " + r.headersIn.host + "\n";
s += "Remote Address: " + r.remoteAddress + "\n";
s += "URI: " + r.uri + "\n";

s += "Headers:\n";
for (h in r.headersIn) {

s += " header ’" + h + "’ is ’" + r.headersIn[h] + "’\n";
}

s += "Args:\n";
for (a in r.args) {

s += " arg ’" + a + "’ is ’" + r.args[a] + "’\n";
}

return s;
}

function baz(r) {
r.status = 200;
r.headersOut.foo = 1234;
r.headersOut[’Content-Type’] = "text/plain; charset=utf-8";
r.headersOut[’Content-Length’] = 15;
r.sendHeader();
r.send("nginx");
r.send("java");
r.send("script");

r.finish();
}

Nginx, Inc. p.197 of 563

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP JS MODULE

function hello(r) {
r.return(200, "Hello world!");

}

// since 0.7.0
async function fetch(r) {

let results = await Promise.all([ngx.fetch(’https://nginx.org/’),
ngx.fetch(’https://nginx.org/en/’)]);

r.return(200, JSON.stringify(results, undefined, 4));
}

// since 0.7.0
async function hash(r) {

let hash = await crypto.subtle.digest(’SHA-512’, r.headersIn.host);
r.setReturnValue(Buffer.from(hash).toString(’hex’));

}

export default {foo, summary, baz, hello, fetch, hash};

2.27.3 Directives

js body filter

Syntax: js_body_filter function | module.function [buffer type=string |
buffer];

Default —

Context: location, if in location, limit except
This directive appeared in version 0.5.2.

Sets an njs function as a response body filter. The filter function is called
for each data chunk of a response body with the following arguments:

r
the HTTP request object

data
the incoming data chunk, may be a string or Buffer depending on the
buffer_type value, by default is a string. Since 0.8.5, the data value
is implicitly converted to a valid UTF-8 string by default. For binary
data, the buffer_type value should be set to buffer.

flags
an object with the following properties:

last
a boolean value, true if data is a last buffer.

The filter function can pass its own modified version of the input data
chunk to the next body filter by calling r.sendBuffer(). For example, to
transform all the lowercase letters in the response body:

function filter(r, data, flags) {
r.sendBuffer(data.toLowerCase(), flags);

}

Nginx, Inc. p.198 of 563

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP JS MODULE

To stop filtering (following data chunks will be passed to client without
calling js_body_filter), r.done() can be used.

If the filter function changes the length of the response body, then it is
required to clear out the Content-Length response header (if any) in js_-
header_filter to enforce chunked transfer encoding.

As the js_body_filter handler returns its result immediately, it
supports only synchronous operations. Thus, asynchronous operations such
as r.subrequest() or setTimeout() are not supported.

The directive can be specified inside the if block since 0.7.7.

js content

Syntax: js_content function | module.function;

Default —

Context: location, if in location, limit except

Sets an njs function as a location content handler. Since 0.4.0, a module
function can be referenced.

The directive can be specified inside the if block since 0.7.7.

js context reuse

Syntax: js_context_reuse number;

Default 128

Context: http, server, location
This directive appeared in version 0.8.6.

Sets a maximum number of JS context to be reused for QuickJS engine.
Each context is used for a single request. The finished context is put into a
pool of reusable contexts. If the pool is full, the context is destroyed.

js engine

Syntax: js_engine njs | qjs;

Default njs

Context: http, server, location
This directive appeared in version 0.8.6.

Sets a JavaScript engine to be used for njs scripts. The njs parameter
sets the njs engine, also used by default. The qjs parameter sets the QuickJS
engine.

Nginx, Inc. p.199 of 563

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP JS MODULE

js fetch buffer size

Syntax: js_fetch_buffer_size size;

Default 16k

Context: http, server, location
This directive appeared in version 0.7.4.

Sets the size of the buffer used for reading and writing with Fetch API.

js fetch ciphers

Syntax: js_fetch_ciphers ciphers;

Default HIGH:!aNULL:!MD5

Context: http, server, location
This directive appeared in version 0.7.0.

Specifies the enabled ciphers for HTTPS requests with Fetch API. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

js fetch max response buffer size

Syntax: js_fetch_max_response_buffer_size size;

Default 1m

Context: http, server, location
This directive appeared in version 0.7.4.

Sets the maximum size of the response received with Fetch API.

js fetch protocols

Syntax: js_fetch_protocols [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];

Default TLSv1 TLSv1.1 TLSv1.2

Context: http, server, location
This directive appeared in version 0.7.0.

Enables the specified protocols for HTTPS requests with Fetch API.

js fetch timeout

Syntax: js_fetch_timeout time;

Default 60s

Context: http, server, location
This directive appeared in version 0.7.4.

Defines a timeout for reading and writing for Fetch API. The timeout is set
only between two successive read/write operations, not for the whole response.
If no data is transmitted within this time, the connection is closed.

Nginx, Inc. p.200 of 563

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP JS MODULE

js fetch trusted certificate

Syntax: js_fetch_trusted_certificate file;

Default —

Context: http, server, location
This directive appeared in version 0.7.0.

Specifies a file with trusted CA certificates in the PEM format used to
verify the HTTPS certificate with Fetch API.

js fetch verify

Syntax: js_fetch_verify on | off;

Default on

Context: http, server, location
This directive appeared in version 0.7.4.

Enables or disables verification of the HTTPS server certificate with Fetch
API.

js fetch verify depth

Syntax: js_fetch_verify_depth number;

Default 100

Context: http, server, location
This directive appeared in version 0.7.0.

Sets the verification depth in the HTTPS server certificates chain with
Fetch API.

js header filter

Syntax: js_header_filter function | module.function;

Default —

Context: location, if in location, limit except
This directive appeared in version 0.5.1.

Sets an njs function as a response header filter. The directive allows
changing arbitrary header fields of a response header.

As the js_header_filter handler returns its result immediately, it
supports only synchronous operations. Thus, asynchronous operations such
as r.subrequest() or setTimeout() are not supported.

The directive can be specified inside the if block since 0.7.7.

js import

Syntax: js_import module.js | export name from module.js;

Default —

Context: http, server, location

Nginx, Inc. p.201 of 563

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP JS MODULE

This directive appeared in version 0.4.0.

Imports a module that implements location and variable handlers in njs.
The export_name is used as a namespace to access module functions. If the
export_name is not specified, the module name will be used as a namespace.

js_import http.js;

Here, the module name http is used as a namespace while accessing
exports. If the imported module exports foo(), http.foo is used to refer
to it.

Several js_import directives can be specified.

The directive can be specified on the server and location level since
0.7.7.

js include

Syntax: js_include file;

Default —

Context: http

Specifies a file that implements location and variable handlers in njs:

nginx.conf:
js_include http.js;
location /version {

js_content version;
}

http.js:
function version(r) {

r.return(200, njs.version);
}

The directive was made obsolete in version 0.4.0 and was removed in version
0.7.1. The js import directive should be used instead.

js path

Syntax: js_path path;

Default —

Context: http, server, location
This directive appeared in version 0.3.0.

Sets an additional path for njs modules.

The directive can be specified on the server and location level since
0.7.7.

Nginx, Inc. p.202 of 563

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP JS MODULE

js periodic

Syntax: js_periodic function | module.function [interval=time]

[jitter=number] [worker_affinity=mask];

Default —

Context: location
This directive appeared in version 0.8.1.

Specifies a content handler to run at regular interval. The handler receives
a session object as its first argument, it also has access to global objects such
as ngx.

The optional interval parameter sets the interval between two
consecutive runs, by default, 5 seconds.

The optional jitter parameter sets the time within which the location
content handler will be randomly delayed, by default, there is no delay.

By default, the js_handler is executed on worker process 0. The optional
worker_affinity parameter allows specifying particular worker processes
where the location content handler should be executed. Each worker process
set is represented by a bitmask of allowed worker processes. The all mask
allows the handler to be executed in all worker processes.

Example:

example.conf:

location @periodics {
to be run at 1 minute intervals in worker process 0
js_periodic main.handler interval=60s;

to be run at 1 minute intervals in all worker processes
js_periodic main.handler interval=60s worker_affinity=all;

to be run at 1 minute intervals in worker processes 1 and 3
js_periodic main.handler interval=60s worker_affinity=0101;

resolver 10.0.0.1;
js_fetch_trusted_certificate /path/to/ISRG_Root_X1.pem;

}

example.js:

async function handler(s) {
let reply = await ngx.fetch(’https://nginx.org/en/docs/njs/’);
let body = await reply.text();

ngx.log(ngx.INFO, body);
}

js preload object

Syntax: js_preload_object name.json | name from file.json;

Default —

Context: http, server, location
This directive appeared in version 0.7.8.

Preloads an immutable object at configure time. The name is used as a
name of the global variable though which the object is available in njs code.

Nginx, Inc. p.203 of 563

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP JS MODULE

If the name is not specified, the file name will be used instead.

js_preload_object map.json;

Here, the map is used as a name while accessing the preloaded object.
Several js_preload_object directives can be specified.

js set

Syntax: js_set $variable function | module.function [nocache];

Default —

Context: http, server, location

Sets an njs function for the specified variable. Since 0.4.0, a module
function can be referenced.

The function is called when the variable is referenced for the first time for
a given request. The exact moment depends on a phase at which the variable
is referenced. This can be used to perform some logic not related to variable
evaluation. For example, if the variable is referenced only in the log format
directive, its handler will not be executed until the log phase. This handler
can be used to do some cleanup right before the request is freed.

Since 0.8.6, if an optional argument nocache is specified, the handler
is called every time it is referenced. Due to current limitations of the rewrite
module, when a nocache variable is referenced by the set directive its handler
should always return a fixed-length value.

As the js_set handler returns its result immediately, it supports
only synchronous operations. Thus, asynchronous operations such as
r.subrequest() or setTimeout() are not supported.

The directive can be specified on the server and location level since
0.7.7.

js shared dict zone

Syntax: js_shared_dict_zone zone=name:size [timeout=time]

[type=string|number] [evict];

Default —

Context: http
This directive appeared in version 0.8.0.

Sets the name and size of the shared memory zone that keeps the key-value
dictionary shared between worker processes.

By default the shared dictionary uses a string as a key and a value. The
optional type parameter allows redefining the value type to number.

The optional timeout parameter sets the time in milliseconds after which
all shared dictionary entries are removed from the zone. If some entries require

Nginx, Inc. p.204 of 563

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP JS MODULE

a different removal time, it can be set with the timeout argument of the add,
incr, and set methods (0.8.5).

The optional evict parameter removes the oldest key-value pair when the
zone storage is exhausted.

Example:

example.conf:
Creates a 1Mb dictionary with string values,
removes key-value pairs after 60 seconds of inactivity:
js_shared_dict_zone zone=foo:1M timeout=60s;

Creates a 512Kb dictionary with string values,
forcibly removes oldest key-value pairs when the zone is exhausted:
js_shared_dict_zone zone=bar:512K timeout=30s evict;

Creates a 32Kb permanent dictionary with number values:
js_shared_dict_zone zone=num:32k type=number;

example.js:
function get(r) {

r.return(200, ngx.shared.foo.get(r.args.key));
}

function set(r) {
r.return(200, ngx.shared.foo.set(r.args.key, r.args.value));

}

function del(r) {
r.return(200, ngx.shared.bar.delete(r.args.key));

}

function increment(r) {
r.return(200, ngx.shared.num.incr(r.args.key, 2));

}

js var

Syntax: js_var $variable [value];

Default —

Context: http, server, location
This directive appeared in version 0.5.3.

Declares a writable variable. The value can contain text, variables, and
their combination. The variable is not overwritten after a redirect unlike
variables created with the set directive.

The directive can be specified on the server and location level since
0.7.7.

2.27.4 Request Argument

Each HTTP njs handler receives one argument, a request object.

Nginx, Inc. p.205 of 563

CHAPTER 2. HTTP SERVER MODULES 2.28. MODULE NGX HTTP KEYVAL MODULE

2.28 Module ngx http keyval module

2.28.1 Summary . 206
2.28.2 Example Configuration 206
2.28.3 Directives . 206

keyval . 206
keyval zone . 207

2.28.1 Summary

The ngx_http_keyval_module module (1.13.3) creates variables with
values taken from key-value pairs managed by the API or a variable (1.15.10)
that can also be set with njs.

This module is available as part of our commercial subscription.

2.28.2 Example Configuration

http {

keyval_zone zone=one:32k state=/var/lib/nginx/state/one.keyval;
keyval $arg_text $text zone=one;
...
server {

...
location / {

return 200 $text;
}

location /api {
api write=on;

}
}

}

2.28.3 Directives

keyval

Syntax: keyval key $variable zone=name;

Default —

Context: http

Creates a new $variable whose value is looked up by the key in the key-
value database. Matching rules are defined by the type parameter of the
keyval_zone directive. The database is stored in a shared memory zone
specified by the zone parameter.

Nginx, Inc. p.206 of 563

https://github.com/nginx/njs-examples/#logging-the-number-of-requests-per-client-http-logging-num-requests
https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.28. MODULE NGX HTTP KEYVAL MODULE

keyval zone

Syntax: keyval_zone zone=name:size [state=file] [timeout=time]

[type=string|ip|prefix] [sync];

Default —

Context: http

Sets the name and size of the shared memory zone that keeps the key-value
database. Key-value pairs are managed by the API.

The optional state parameter specifies a file that keeps the current state
of the key-value database in the JSON format and makes it persistent across
nginx restarts. Changing the file content directly should be avoided.

Examples:

keyval_zone zone=one:32k state=/var/lib/nginx/state/one.keyval; # path for
Linux

keyval_zone zone=one:32k state=/var/db/nginx/state/one.keyval; # path for
FreeBSD

The optional timeout parameter (1.15.0) sets the time after which key-
value pairs are removed from the zone.

The optional type parameter (1.17.1) activates an extra index optimized
for matching the key of a certain type and defines matching rules when
evaluating a keyval $variable.

The index is stored in the same shared memory zone and thus requires
additional storage.

type=string
default, no index is enabled; variable lookup is performed using exact
match of the record key and a search key

type=ip
the search key is the textual representation of IPv4 or IPv6 address or
CIDR range; to match a record key, the search key must belong to a
subnet specified by a record key or exactly match an IP address

type=prefix
variable lookup is performed using prefix match of a record key and a
search key (1.17.5); to match a record key, the record key must be a
prefix of the search key

The optional sync parameter (1.15.0) enables synchronization of the
shared memory zone. The synchronization requires the timeout parameter
to be set.

If the synchronization is enabled, removal of key-value pairs (no matter
one or all) will be performed only on a target cluster node. The same key-
value pairs on other cluster nodes will be removed upon timeout.

Nginx, Inc. p.207 of 563

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP LIMIT CONN MODULE

2.29 Module ngx http limit conn module

2.29.1 Summary . 208
2.29.2 Example Configuration 208
2.29.3 Directives . 208

limit conn . 208
limit conn dry run . 209
limit conn log level . 209
limit conn status . 210
limit conn zone . 210
limit zone . 210

2.29.4 Embedded Variables . 211

2.29.1 Summary

The ngx_http_limit_conn_module module is used to limit the
number of connections per the defined key, in particular, the number of
connections from a single IP address.

Not all connections are counted. A connection is counted only if it has a
request being processed by the server and the whole request header has already
been read.

2.29.2 Example Configuration

http {
limit_conn_zone $binary_remote_addr zone=addr:10m;

...

server {

...

location /download/ {
limit_conn addr 1;

}

2.29.3 Directives

limit conn

Syntax: limit_conn zone number;

Default —

Context: http, server, location

Sets the shared memory zone and the maximum allowed number of
connections for a given key value. When this limit is exceeded, the server
will return the error in reply to a request. For example, the directives

Nginx, Inc. p.208 of 563

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP LIMIT CONN MODULE

limit_conn_zone $binary_remote_addr zone=addr:10m;

server {
location /download/ {

limit_conn addr 1;
}

allow only one connection per an IP address at a time.

In HTTP/2 and HTTP/3, each concurrent request is considered a separate
connection.

There could be several limit_conn directives. For example, the following
configuration will limit the number of connections to the server per a client IP
and, at the same time, the total number of connections to the virtual server:

limit_conn_zone $binary_remote_addr zone=perip:10m;
limit_conn_zone $server_name zone=perserver:10m;

server {
...
limit_conn perip 10;
limit_conn perserver 100;

}

These directives are inherited from the previous configuration level if and
only if there are no limit_conn directives defined on the current level.

limit conn dry run

Syntax: limit_conn_dry_run on | off;

Default off

Context: http, server, location
This directive appeared in version 1.17.6.

Enables the dry run mode. In this mode, the number of connections is
not limited, however, in the shared memory zone, the number of excessive
connections is accounted as usual.

limit conn log level

Syntax: limit_conn_log_level info | notice | warn | error;

Default error

Context: http, server, location
This directive appeared in version 0.8.18.

Sets the desired logging level for cases when the server limits the number
of connections.

Nginx, Inc. p.209 of 563

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP LIMIT CONN MODULE

limit conn status

Syntax: limit_conn_status code;

Default 503

Context: http, server, location
This directive appeared in version 1.3.15.

Sets the status code to return in response to rejected requests.

limit conn zone

Syntax: limit_conn_zone key zone=name:size;

Default —

Context: http

Sets parameters for a shared memory zone that will keep states for various
keys. In particular, the state includes the current number of connections. The
key can contain text, variables, and their combination. Requests with an empty
key value are not accounted.

Prior to version 1.7.6, a key could contain exactly one variable.

Usage example:

limit_conn_zone $binary_remote_addr zone=addr:10m;

Here, a client IP address serves as a key. Note that instead of $remote addr,
the $binary remote addr variable is used here. The $remote addr variable’s size
can vary from 7 to 15 bytes. The stored state occupies either 32 or 64 bytes
of memory on 32-bit platforms and always 64 bytes on 64-bit platforms. The
$binary remote addr variable’s size is always 4 bytes for IPv4 addresses or 16
bytes for IPv6 addresses. The stored state always occupies 32 or 64 bytes on
32-bit platforms and 64 bytes on 64-bit platforms. One megabyte zone can
keep about 32 thousand 32-byte states or about 16 thousand 64-byte states.
If the zone storage is exhausted, the server will return the error to all further
requests.

Additionally, as part of our commercial subscription, the status
information for each such shared memory zone can be obtained or reset with
the API since 1.17.7.

limit zone

Syntax: limit_zone name $variable size;

Default —

Context: http

This directive was made obsolete in version 1.1.8 and was removed in
version 1.7.6. An equivalent limit conn zone directive with a changed syntax
should be used instead:

Nginx, Inc. p.210 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP LIMIT CONN MODULE

limit_conn_zone $variable zone=name:size;

2.29.4 Embedded Variables

$limit conn status
keeps the result of limiting the number of connections (1.17.6): PASSED,
REJECTED, or REJECTED_DRY_RUN

Nginx, Inc. p.211 of 563

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP LIMIT REQ MODULE

2.30 Module ngx http limit req module

2.30.1 Summary . 212
2.30.2 Example Configuration 212
2.30.3 Directives . 212

limit req . 212
limit req dry run . 213
limit req log level . 213
limit req status . 214
limit req zone . 214

2.30.4 Embedded Variables . 215

2.30.1 Summary

The ngx_http_limit_req_module module (0.7.21) is used to limit
the request processing rate per a defined key, in particular, the processing rate
of requests coming from a single IP address. The limitation is done using the
“leaky bucket” method.

2.30.2 Example Configuration

http {
limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

...

server {

...

location /search/ {
limit_req zone=one burst=5;

}

2.30.3 Directives

limit req

Syntax: limit_req zone=name [burst=number] [nodelay |
delay=number];

Default —

Context: http, server, location

Sets the shared memory zone and the maximum burst size of requests. If
the requests rate exceeds the rate configured for a zone, their processing is
delayed such that requests are processed at a defined rate. Excessive requests
are delayed until their number exceeds the maximum burst size in which case
the request is terminated with an error. By default, the maximum burst size
is equal to zero. For example, the directives

Nginx, Inc. p.212 of 563

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP LIMIT REQ MODULE

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

server {
location /search/ {

limit_req zone=one burst=5;
}

allow not more than 1 request per second at an average, with bursts not
exceeding 5 requests.

If delaying of excessive requests while requests are being limited is not
desired, the parameter nodelay should be used:

limit_req zone=one burst=5 nodelay;

The delay parameter (1.15.7) specifies a limit at which excessive requests
become delayed. Default value is zero, i.e. all excessive requests are delayed.

There could be several limit_req directives. For example, the following
configuration will limit the processing rate of requests coming from a single
IP address and, at the same time, the request processing rate by the virtual
server:

limit_req_zone $binary_remote_addr zone=perip:10m rate=1r/s;
limit_req_zone $server_name zone=perserver:10m rate=10r/s;

server {
...
limit_req zone=perip burst=5 nodelay;
limit_req zone=perserver burst=10;

}

These directives are inherited from the previous configuration level if and
only if there are no limit_req directives defined on the current level.

limit req dry run

Syntax: limit_req_dry_run on | off;

Default off

Context: http, server, location
This directive appeared in version 1.17.1.

Enables the dry run mode. In this mode, requests processing rate is not
limited, however, in the shared memory zone, the number of excessive requests
is accounted as usual.

limit req log level

Syntax: limit_req_log_level info | notice | warn | error;

Default error

Context: http, server, location
This directive appeared in version 0.8.18.

Nginx, Inc. p.213 of 563

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP LIMIT REQ MODULE

Sets the desired logging level for cases when the server refuses to process
requests due to rate exceeding, or delays request processing. Logging level for
delays is one point less than for refusals; for example, if “limit_req_log_-
level notice” is specified, delays are logged with the info level.

limit req status

Syntax: limit_req_status code;

Default 503

Context: http, server, location
This directive appeared in version 1.3.15.

Sets the status code to return in response to rejected requests.

limit req zone

Syntax: limit_req_zone key zone=name:size rate=rate [sync];

Default —

Context: http

Sets parameters for a shared memory zone that will keep states for various
keys. In particular, the state stores the current number of excessive requests.
The key can contain text, variables, and their combination. Requests with an
empty key value are not accounted.

Prior to version 1.7.6, a key could contain exactly one variable.

Usage example:

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

Here, the states are kept in a 10 megabyte zone “one”, and an average
request processing rate for this zone cannot exceed 1 request per second.

A client IP address serves as a key. Note that instead of $remote addr, the
$binary remote addr variable is used here. The $binary remote addr variable’s
size is always 4 bytes for IPv4 addresses or 16 bytes for IPv6 addresses. The
stored state always occupies 64 bytes on 32-bit platforms and 128 bytes on 64-
bit platforms. One megabyte zone can keep about 16 thousand 64-byte states
or about 8 thousand 128-byte states.

If the zone storage is exhausted, the least recently used state is removed. If
even after that a new state cannot be created, the request is terminated with
an error.

The rate is specified in requests per second (r/s). If a rate of less than one
request per second is desired, it is specified in request per minute (r/m). For
example, half-request per second is 30r/m.

The sync parameter (1.15.3) enables synchronization of the shared
memory zone.

Nginx, Inc. p.214 of 563

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP LIMIT REQ MODULE

The sync parameter is available as part of our commercial subscription.

Additionally, as part of our commercial subscription, the status
information for each such shared memory zone can be obtained or reset with
the API since 1.17.7.

2.30.4 Embedded Variables

$limit req status
keeps the result of limiting the request processing rate (1.17.6): PASSED,
DELAYED, REJECTED, DELAYED_DRY_RUN, or REJECTED_DRY_RUN

Nginx, Inc. p.215 of 563

https://nginx.com/products/
https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP LOG MODULE

2.31 Module ngx http log module

2.31.1 Summary . 216
2.31.2 Example Configuration 216
2.31.3 Directives . 216

access log . 216
log format . 218
open log file cache . 219

2.31.1 Summary

The ngx_http_log_module module writes request logs in the specified
format.

Requests are logged in the context of a location where processing ends.
It may be different from the original location, if an internal redirect happens
during request processing.

2.31.2 Example Configuration

log_format compression ’$remote_addr - $remote_user [$time_local] ’
’"$request" $status $bytes_sent ’
’"$http_referer" "$http_user_agent" "$gzip_ratio"’;

access_log /spool/logs/nginx-access.log compression buffer=32k;

2.31.3 Directives

access log

Syntax: access_log path [format [buffer=size] [gzip[=level]]

[flush=time] [if=condition]];

Syntax: access_log off;

Default logs/access.log combined

Context: http, server, location, if in location, limit except

Sets the path, format, and configuration for a buffered log write. Several
logs can be specified on the same configuration level. Logging to syslog can
be configured by specifying the “syslog:” prefix in the first parameter. The
special value off cancels all access_log directives on the current level. If
the format is not specified then the predefined “combined” format is used.

If either the buffer or gzip (1.3.10, 1.2.7) parameter is used, writes to
log will be buffered.

The buffer size must not exceed the size of an atomic write to a disk file.
For FreeBSD this size is unlimited.

When buffering is enabled, the data will be written to the file:

Nginx, Inc. p.216 of 563

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP LOG MODULE

• if the next log line does not fit into the buffer;

• if the buffered data is older than specified by the flush parameter
(1.3.10, 1.2.7);

• when a worker process is re-opening log files or is shutting down.

If the gzip parameter is used, then the buffered data will be compressed
before writing to the file. The compression level can be set between 1 (fastest,
less compression) and 9 (slowest, best compression). By default, the buffer
size is equal to 64K bytes, and the compression level is set to 1. Since the data
is compressed in atomic blocks, the log file can be decompressed or read by
“zcat” at any time.

Example:

access_log /path/to/log.gz combined gzip flush=5m;

For gzip compression to work, nginx must be built with the zlib library.

The file path can contain variables (0.7.6+), but such logs have some
constraints:

• the user whose credentials are used by worker processes should have
permissions to create files in a directory with such logs;

• buffered writes do not work;

• the file is opened and closed for each log write. However, since the
descriptors of frequently used files can be stored in a cache, writing to
the old file can continue during the time specified by the open log file -
cache directive’s valid parameter

• during each log write the existence of the request’s root directory is
checked, and if it does not exist the log is not created. It is thus a good
idea to specify both root and access_log on the same configuration
level:

server {
root /spool/vhost/data/$host;
access_log /spool/vhost/logs/$host;
...

The if parameter (1.7.0) enables conditional logging. A request will not
be logged if the condition evaluates to “0” or an empty string. In the following
example, the requests with response codes 2xx and 3xx will not be logged:

map $status $loggable {
~^[23] 0;
default 1;

}

access_log /path/to/access.log combined if=$loggable;

Nginx, Inc. p.217 of 563

https://nginx.org/en/docs/control.html

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP LOG MODULE

log format

Syntax: log_format name [escape=default|json|none] string . . . ;

Default combined "..."

Context: http

Specifies log format.
The escape parameter (1.11.8) allows setting json or default

characters escaping in variables, by default, default escaping is used. The
none value (1.13.10) disables escaping.

For default escaping, characters “"”, “\”, and other characters with
values less than 32 (0.7.0) or above 126 (1.1.6) are escaped as “\xXX”. If
the variable value is not found, a hyphen (“-”) will be logged.

For json escaping, all characters not allowed in JSON strings will be
escaped: characters “"” and “\” are escaped as “\"” and “\\”, characters with
values less than 32 are escaped as “\n”, “\r”, “\t”, “\b”, “\f”, or “\u00XX”.

The log format can contain common variables, and variables that exist only
at the time of a log write:

$bytes sent
the number of bytes sent to a client

$connection
connection serial number

$connection requests
the current number of requests made through a connection (1.1.18)

$msec
time in seconds with a milliseconds resolution at the time of the log write

$pipe
“p” if request was pipelined, “.” otherwise

$request length
request length (including request line, header, and request body)

$request time
request processing time in seconds with a milliseconds resolution; time
elapsed between the first bytes were read from the client and the log
write after the last bytes were sent to the client

$status
response status

$time iso8601
local time in the ISO 8601 standard format

$time local
local time in the Common Log Format

In the modern nginx versions variables $status (1.3.2, 1.2.2), $bytes -
sent (1.3.8, 1.2.5), $connection (1.3.8, 1.2.5), $connection requests (1.3.8,
1.2.5), $msec (1.3.9, 1.2.6), $request time (1.3.9, 1.2.6), $pipe (1.3.12, 1.2.7),
$request length (1.3.12, 1.2.7), $time iso8601 (1.3.12, 1.2.7), and $time local
(1.3.12, 1.2.7) are also available as common variables.

Nginx, Inc. p.218 of 563

https://datatracker.ietf.org/doc/html/rfc8259#section-7

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP LOG MODULE

Header lines sent to a client have the prefix “sent_http_”, for example,
$sent http content range.

The configuration always includes the predefined “combined” format:

log_format combined ’$remote_addr - $remote_user [$time_local] ’
’"$request" $status $body_bytes_sent ’
’"$http_referer" "$http_user_agent"’;

open log file cache

Syntax: open_log_file_cache max=N [inactive=time] [min_uses=N]

[valid=time];

Syntax: open_log_file_cache off;

Default off

Context: http, server, location

Defines a cache that stores the file descriptors of frequently used logs whose
names contain variables. The directive has the following parameters:

max
sets the maximum number of descriptors in a cache; if the cache becomes
full the least recently used (LRU) descriptors are closed

inactive
sets the time after which the cached descriptor is closed if there were no
access during this time; by default, 10 seconds

min_uses
sets the minimum number of file uses during the time defined by the
inactive parameter to let the descriptor stay open in a cache; by
default, 1

valid
sets the time after which it should be checked that the file still exists
with the same name; by default, 60 seconds

off
disables caching

Usage example:

open_log_file_cache max=1000 inactive=20s valid=1m min_uses=2;

Nginx, Inc. p.219 of 563

CHAPTER 2. HTTP SERVER MODULES 2.32. MODULE NGX HTTP MAP MODULE

2.32 Module ngx http map module

2.32.1 Summary . 220
2.32.2 Example Configuration 220
2.32.3 Directives . 220

map . 220
map hash bucket size . 222
map hash max size . 222

2.32.1 Summary

The ngx_http_map_module module creates variables whose values
depend on values of other variables.

2.32.2 Example Configuration

map $http_host $name {
hostnames;

default 0;

example.com 1;

*.example.com 1;
example.org 2;

*.example.org 2;
.example.net 3;
wap.* 4;

}

map $http_user_agent $mobile {
default 0;
"~Opera Mini" 1;

}

2.32.3 Directives

map

Syntax: map string $variable { . . . }
Default —

Context: http

Creates a new variable whose value depends on values of one or more of
the source variables specified in the first parameter.

Before version 0.9.0 only a single variable could be specified in the first
parameter.

Since variables are evaluated only when they are used, the mere
declaration even of a large number of “map” variables does not add any extra
costs to request processing.

Nginx, Inc. p.220 of 563

CHAPTER 2. HTTP SERVER MODULES 2.32. MODULE NGX HTTP MAP MODULE

Parameters inside the map block specify a mapping between source and
resulting values.

Source values are specified as strings or regular expressions (0.9.6).
Strings are matched ignoring the case.
A regular expression should either start from the “~” symbol for a case-

sensitive matching, or from the “~*” symbols (1.0.4) for case-insensitive
matching. A regular expression can contain named and positional captures
that can later be used in other directives along with the resulting variable.

If a source value matches one of the names of special parameters described
below, it should be prefixed with the “\” symbol.

The resulting value can contain text, variable (0.9.0), and their combination
(1.11.0).

The following special parameters are also supported:

default value
sets the resulting value if the source value matches none of the specified
variants. When default is not specified, the default resulting value
will be an empty string.

hostnames
indicates that source values can be hostnames with a prefix or suffix
mask:

*.example.com 1;
example.* 1;

The following two records

example.com 1;

*.example.com 1;

can be combined:

.example.com 1;

This parameter should be specified before the list of values.

include file
includes a file with values. There can be several inclusions.

volatile
indicates that the variable is not cacheable (1.11.7).

If the source value matches more than one of the specified variants, e.g.
both a mask and a regular expression match, the first matching variant will be
chosen, in the following order of priority:

1. string value without a mask

2. longest string value with a prefix mask, e.g. “*.example.com”

3. longest string value with a suffix mask, e.g. “mail.*”

Nginx, Inc. p.221 of 563

CHAPTER 2. HTTP SERVER MODULES 2.32. MODULE NGX HTTP MAP MODULE

4. first matching regular expression (in order of appearance in a
configuration file)

5. default value

map hash bucket size

Syntax: map_hash_bucket_size size;

Default 32|64|128

Context: http

Sets the bucket size for the map variables hash tables. Default value
depends on the processor’s cache line size. The details of setting up hash
tables are provided in a separate document.

map hash max size

Syntax: map_hash_max_size size;

Default 2048

Context: http

Sets the maximum size of the map variables hash tables. The details of
setting up hash tables are provided in a separate document.

Nginx, Inc. p.222 of 563

CHAPTER 2. HTTP SERVER MODULES 2.33. MODULE NGX HTTP MEMCACHED MODULE

2.33 Module ngx http memcached module

2.33.1 Summary . 223
2.33.2 Example Configuration 223
2.33.3 Directives . 223

memcached bind . 223
memcached buffer size 224
memcached connect timeout 224
memcached gzip flag . 224
memcached next upstream 225
memcached next upstream timeout 225
memcached next upstream tries 225
memcached pass . 226
memcached read timeout 226
memcached send timeout 226
memcached socket keepalive 226

2.33.4 Embedded Variables . 227

2.33.1 Summary

The ngx_http_memcached_module module is used to obtain responses
from a memcached server. The key is set in the $memcached key variable. A
response should be put in memcached in advance by means external to nginx.

2.33.2 Example Configuration

server {
location / {

set $memcached_key "$uri?$args";
memcached_pass host:11211;
error_page 404 502 504 = @fallback;

}

location @fallback {
proxy_pass http://backend;

}
}

2.33.3 Directives

memcached bind

Syntax: memcached_bind address [transparent] | off;

Default —

Context: http, server, location
This directive appeared in version 0.8.22.

Makes outgoing connections to a memcached server originate from the
specified local IP address with an optional port (1.11.2). Parameter value can
contain variables (1.3.12). The special value off (1.3.12) cancels the effect

Nginx, Inc. p.223 of 563

CHAPTER 2. HTTP SERVER MODULES 2.33. MODULE NGX HTTP MEMCACHED MODULE

of the memcached_bind directive inherited from the previous configuration
level, which allows the system to auto-assign the local IP address and port.

The transparent parameter (1.11.0) allows outgoing connections to a
memcached server originate from a non-local IP address, for example, from a
real IP address of a client:

memcached_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run nginx
worker processes with the superuser privileges. On Linux it is not required
(1.13.8) as if the transparent parameter is specified, worker processes
inherit the CAP_NET_RAW capability from the master process. It is also
necessary to configure kernel routing table to intercept network traffic from
the memcached server.

memcached buffer size

Syntax: memcached_buffer_size size;

Default 4k|8k

Context: http, server, location

Sets the size of the buffer used for reading the response received from the
memcached server. The response is passed to the client synchronously, as soon
as it is received.

memcached connect timeout

Syntax: memcached_connect_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for establishing a connection with a memcached server.
It should be noted that this timeout cannot usually exceed 75 seconds.

memcached gzip flag

Syntax: memcached_gzip_flag flag;

Default —

Context: http, server, location
This directive appeared in version 1.3.6.

Enables the test for the flag presence in the memcached server response
and sets the “Content-Encoding” response header field to “gzip” if the
flag is set.

Nginx, Inc. p.224 of 563

CHAPTER 2. HTTP SERVER MODULES 2.33. MODULE NGX HTTP MEMCACHED MODULE

memcached next upstream

Syntax: memcached_next_upstream error | timeout |
invalid_response | not_found | off . . . ;

Default error timeout

Context: http, server, location

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_response
a server returned an empty or invalid response;

not_found
a response was not found on the server;

off
disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of
communication with a server. The cases of error, timeout and invalid_-
response are always considered unsuccessful attempts, even if they are not
specified in the directive. The case of not_found is never considered an
unsuccessful attempt.

Passing a request to the next server can be limited by the number of tries
and by time.

memcached next upstream timeout

Syntax: memcached_next_upstream_timeout time;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

memcached next upstream tries

Syntax: memcached_next_upstream_tries number;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Nginx, Inc. p.225 of 563

CHAPTER 2. HTTP SERVER MODULES 2.33. MODULE NGX HTTP MEMCACHED MODULE

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

memcached pass

Syntax: memcached_pass address;

Default —

Context: location, if in location

Sets the memcached server address. The address can be specified as a
domain name or IP address, and a port:

memcached_pass localhost:11211;

or as a UNIX-domain socket path:

memcached_pass unix:/tmp/memcached.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

memcached read timeout

Syntax: memcached_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the memcached server.
The timeout is set only between two successive read operations, not for the
transmission of the whole response. If the memcached server does not transmit
anything within this time, the connection is closed.

memcached send timeout

Syntax: memcached_send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a request to the memcached server. The
timeout is set only between two successive write operations, not for the
transmission of the whole request. If the memcached server does not receive
anything within this time, the connection is closed.

memcached socket keepalive

Syntax: memcached_socket_keepalive on | off;

Default off

Context: http, server, location
This directive appeared in version 1.15.6.

Nginx, Inc. p.226 of 563

CHAPTER 2. HTTP SERVER MODULES 2.33. MODULE NGX HTTP MEMCACHED MODULE

Configures the “TCP keepalive” behavior for outgoing connections to a
memcached server. By default, the operating system’s settings are in effect
for the socket. If the directive is set to the value “on”, the SO_KEEPALIVE
socket option is turned on for the socket.

2.33.4 Embedded Variables

$memcached key
Defines a key for obtaining response from a memcached server.

Nginx, Inc. p.227 of 563

CHAPTER 2. HTTP SERVER MODULES 2.34. MODULE NGX HTTP MIRROR MODULE

2.34 Module ngx http mirror module

2.34.1 Summary . 228
2.34.2 Example Configuration 228
2.34.3 Directives . 228

mirror . 228
mirror request body . 228

2.34.1 Summary

The ngx_http_mirror_module module (1.13.4) implements mirroring
of an original request by creating background mirror subrequests. Responses
to mirror subrequests are ignored.

2.34.2 Example Configuration

location / {
mirror /mirror;
proxy_pass http://backend;

}

location = /mirror {
internal;
proxy_pass http://test_backend$request_uri;

}

2.34.3 Directives

mirror

Syntax: mirror uri | off;

Default off

Context: http, server, location

Sets the URI to which an original request will be mirrored. Several mirrors
can be specified on the same configuration level.

mirror request body

Syntax: mirror_request_body on | off;

Default on

Context: http, server, location

Indicates whether the client request body is mirrored. When
enabled, the client request body will be read prior to creating mirror
subrequests. In this case, unbuffered client request body proxying set by the
proxy request buffering, fastcgi request buffering, scgi request buffering, and
uwsgi request buffering directives will be disabled.

Nginx, Inc. p.228 of 563

CHAPTER 2. HTTP SERVER MODULES 2.34. MODULE NGX HTTP MIRROR MODULE

location / {
mirror /mirror;
mirror_request_body off;
proxy_pass http://backend;

}

location = /mirror {
internal;
proxy_pass http://log_backend;
proxy_pass_request_body off;
proxy_set_header Content-Length "";
proxy_set_header X-Original-URI $request_uri;

}

Nginx, Inc. p.229 of 563

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP MP4 MODULE

2.35 Module ngx http mp4 module

2.35.1 Summary . 230
2.35.2 Example Configuration 231
2.35.3 Directives . 231

mp4 . 231
mp4 buffer size . 231
mp4 max buffer size . 232
mp4 limit rate . 232
mp4 limit rate after . 232
mp4 start key frame . 232

2.35.1 Summary

The ngx_http_mp4_module module provides pseudo-streaming server-
side support for MP4 files. Such files typically have the .mp4, .m4v, or .m4a
filename extensions.

Pseudo-streaming works in alliance with a compatible media player. The
player sends an HTTP request to the server with the start time specified in the
query string argument (named simply start and specified in seconds), and
the server responds with the stream such that its start position corresponds to
the requested time, for example:

http://example.com/elephants_dream.mp4?start=238.88

This allows performing a random seeking at any time, or starting playback
in the middle of the timeline.

To support seeking, H.264-based formats store metadata in a so-called
“moov atom”. It is a part of the file that holds the index information for
the whole file.

To start playback, the player first needs to read metadata. This is done
by sending a special request with the start=0 argument. A lot of encoding
software insert the metadata at the end of the file. This is suboptimal for
pseudo-streaming, because the player has to download the entire file before
starting playback. If the metadata are located at the beginning of the file,
it is enough for nginx to simply start sending back the file contents. If the
metadata are located at the end of the file, nginx must read the entire file and
prepare a new stream so that the metadata come before the media data. This
involves some CPU, memory, and disk I/O overhead, so it is a good idea to
prepare an original file for pseudo-streaming in advance, rather than having

nginx do this on every such request.
The module also supports the end argument of an HTTP request (1.5.13)

which sets the end point of playback. The end argument can be specified with
the start argument or separately:

http://example.com/elephants_dream.mp4?start=238.88&end=555.55

Nginx, Inc. p.230 of 563

https://github.com/flowplayer/flowplayer/wiki/7.1.1-video-file-correction

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP MP4 MODULE

For a matching request with a non-zero start or end argument, nginx
will read the metadata from the file, prepare the stream with the requested
time range, and send it to the client. This has the same overhead as described
above.

If the start argument points to a non-key video frame, the beginning of
such video will be broken. To fix this issue, the video can be prepended with
the key frame before start point and with all intermediate frames between
them. These frames will be hidden from playback using an edit list (1.21.4).

If a matching request does not include the start and end arguments,
there is no overhead, and the file is sent simply as a static resource. Some
players also support byte-range requests, and thus do not require this module.

This module is not built by default, it should be enabled with the
--with-http_mp4_module configuration parameter.

If a third-party mp4 module was previously used, it should be disabled.

A similar pseudo-streaming support for FLV files is provided by the ngx -
http flv module module.

2.35.2 Example Configuration

location /video/ {
mp4;
mp4_buffer_size 1m;
mp4_max_buffer_size 5m;
mp4_limit_rate on;
mp4_limit_rate_after 30s;

}

2.35.3 Directives

mp4

Syntax: mp4;

Default —

Context: location

Turns on module processing in a surrounding location.

mp4 buffer size

Syntax: mp4_buffer_size size;

Default 512K

Context: http, server, location

Sets the initial size of the buffer used for processing MP4 files.

Nginx, Inc. p.231 of 563

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP MP4 MODULE

mp4 max buffer size

Syntax: mp4_max_buffer_size size;

Default 10M

Context: http, server, location

During metadata processing, a larger buffer may become necessary. Its size
cannot exceed the specified size, or else nginx will return the 500 Internal
Server Error server error, and log the following message:

"/some/movie/file.mp4" mp4 moov atom is too large:
12583268, you may want to increase mp4_max_buffer_size

mp4 limit rate

Syntax: mp4_limit_rate on | off | factor;

Default off

Context: http, server, location

Limits the rate of response transmission to a client. The rate is limited
based on the average bitrate of the MP4 file served. To calculate the rate, the
bitrate is multiplied by the specified factor. The special value“on”corresponds
to the factor of 1.1. The special value “off” disables rate limiting. The limit
is set per a request, and so if a client simultaneously opens two connections,
the overall rate will be twice as much as the specified limit.

This directive is available as part of our commercial subscription.

mp4 limit rate after

Syntax: mp4_limit_rate_after time;

Default 60s

Context: http, server, location

Sets the initial amount of media data (measured in playback time) after
which the further transmission of the response to a client will be rate limited.

This directive is available as part of our commercial subscription.

mp4 start key frame

Syntax: mp4_start_key_frame on | off;

Default off

Context: http, server, location
This directive appeared in version 1.21.4.

Forces output video to always start with a key video frame. If the start
argument does not point to a key frame, initial frames are hidden using an
mp4 edit list. Edit lists are supported by major players and browsers such as
Chrome, Safari, QuickTime and ffmpeg, partially supported by Firefox.

Nginx, Inc. p.232 of 563

https://nginx.com/products/
https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP PERL MODULE

2.36 Module ngx http perl module

2.36.1 Summary . 233
2.36.2 Known Issues . 233
2.36.3 Example Configuration 234
2.36.4 Directives . 234

perl . 234
perl modules . 235
perl require . 235
perl set . 235

2.36.5 Calling Perl from SSI . 235
2.36.6 The $r Request Object Methods 235

2.36.1 Summary

The ngx_http_perl_module module is used to implement location and
variable handlers in Perl and insert Perl calls into SSI.

This module is not built by default, it should be enabled with the
--with-http_perl_module configuration parameter.

This module requires Perl version 5.6.1 or higher. The C compiler should
be compatible with the one used to build Perl.

2.36.2 Known Issues

The module is experimental, caveat emptor applies.
In order for Perl to recompile the modified modules during recon-

figuration, it should be built with the -Dusemultiplicity=yes or
-Dusethreads=yes parameters. Also, to make Perl leak less memory at
run time, it should be built with the -Dusemymalloc=no parameter. To
check the values of these parameters in an already built Perl (preferred values
are specified in the example), run:

$ perl -V:usemultiplicity -V:usemymalloc
usemultiplicity=’define’;
usemymalloc=’n’;

Note that after rebuilding Perl with the new -Dusemultiplicity=yes
or -Dusethreads=yes parameters, all binary Perl modules will have to be
rebuilt as well — they will just stop working with the new Perl.

There is a possibility that the main process and then worker processes
will grow in size after every reconfiguration. If the main process grows to an
unacceptable size, the live upgrade procedure can be applied without changing
the executable file.

While the Perl module is performing a long-running operation, such as
resolving a domain name, connecting to another server, or querying a database,
other requests assigned to the current worker process will not be processed. It

Nginx, Inc. p.233 of 563

https://www.perl.org/get.html
https://nginx.org/en/docs/control.html#upgrade

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP PERL MODULE

is thus recommended to perform only such operations that have predictable
and short execution time, such as accessing the local file system.

2.36.3 Example Configuration

http {

perl_modules perl/lib;
perl_require hello.pm;

perl_set $msie6 ’

sub {
my $r = shift;
my $ua = $r->header_in("User-Agent");

return "" if $ua =~ /Opera/;
return "1" if $ua =~ / MSIE [6-9]\.\d+/;
return "";

}

’;

server {
location / {

perl hello::handler;
}

}

The perl/lib/hello.pm module:

package hello;

use nginx;

sub handler {
my $r = shift;

$r->send_http_header("text/html");
return OK if $r->header_only;

$r->print("hello!\n
");

if (-f $r->filename or -d _) {
$r->print($r->uri, " exists!\n");

}

return OK;
}

1;
__END__

2.36.4 Directives

perl

Syntax: perl module::function|’sub { . . . }’;

Default —

Context: location, limit except

Nginx, Inc. p.234 of 563

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP PERL MODULE

Sets a Perl handler for the given location.

perl modules

Syntax: perl_modules path;

Default —

Context: http

Sets an additional path for Perl modules.

perl require

Syntax: perl_require module;

Default —

Context: http

Defines the name of a module that will be loaded during each
reconfiguration. Several perl_require directives can be present.

perl set

Syntax: perl_set $variable module::function|’sub { . . . }’;

Default —

Context: http

Installs a Perl handler for the specified variable.

2.36.5 Calling Perl from SSI

An SSI command calling Perl has the following format:

<!--# perl sub="module::function" arg="parameter1" arg="parameter2" ...
-->

2.36.6 The $r Request Object Methods

$r->args
returns request arguments.

$r->filename
returns a filename corresponding to the request URI.

$r->has_request_body(handler)
returns 0 if there is no body in a request. If there is a body, the specified
handler is set for the request and 1 is returned. After reading the request
body, nginx will call the specified handler. Note that the handler function
should be passed by reference. Example:

package hello;

use nginx;

Nginx, Inc. p.235 of 563

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP PERL MODULE

sub handler {
my $r = shift;

if ($r->request_method ne "POST") {
return DECLINED;

}

if ($r->has_request_body(\&post)) {
return OK;

}

return HTTP_BAD_REQUEST;
}

sub post {
my $r = shift;

$r->send_http_header;

$r->print("request_body: \"", $r->request_body, "\"
");
$r->print("request_body_file: \"", $r->request_body_file, "\"
\n

");

return OK;
}

1;

__END__

$r->allow_ranges
enables the use of byte ranges when sending responses.

$r->discard_request_body
instructs nginx to discard the request body.

$r->header_in(field)
returns the value of the specified client request header field.

$r->header_only
determines whether the whole response or only its header should be sent
to the client.

$r->header_out(field, value)
sets a value for the specified response header field.

$r->internal_redirect(uri)
does an internal redirect to the specified uri. An actual redirect happens
after the Perl handler execution is completed.

Since version 1.17.2, the method accepts escaped URIs and supports
redirections to named locations.

$r->log_error(errno, message)
writes the specified message into the error log. If errno is non-zero, an
error code and its description will be appended to the message.

$r->print(text, ...)
passes data to a client.

$r->request_body
returns the client request body if it has not been written to a temporary
file. To ensure that the client request body is in memory, its size should

Nginx, Inc. p.236 of 563

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP PERL MODULE

be limited by client max body size, and a sufficient buffer size should be
set using client body buffer size.

$r->request_body_file
returns the name of the file with the client request body. After the
processing, the file should be removed. To always write a request body
to a file, client body in file only should be enabled.

$r->request_method
returns the client request HTTP method.

$r->remote_addr
returns the client IP address.

$r->flush
immediately sends data to the client.

$r->sendfile(name[, offset[, length]])
sends the specified file content to the client. Optional parameters specify
the initial offset and length of the data to be transmitted. The actual
data transmission happens after the Perl handler has completed.

$r->send_http_header([type])
sends the response header to the client. The optional type parameter sets
the value of the Content-Type response header field. If the value is
an empty string, the Content-Type header field will not be sent.

$r->status(code)
sets a response code.

$r->sleep(milliseconds, handler)
sets the specified handler and stops request processing for the specified
time. In the meantime, nginx continues to process other requests. After
the specified time has elapsed, nginx will call the installed handler. Note
that the handler function should be passed by reference. In order to pass
data between handlers, $r->variable() should be used. Example:

package hello;

use nginx;

sub handler {
my $r = shift;

$r->discard_request_body;
$r->variable("var", "OK");
$r->sleep(1000, \&next);

return OK;
}

sub next {
my $r = shift;

$r->send_http_header;
$r->print($r->variable("var"));

return OK;
}

1;

__END__

Nginx, Inc. p.237 of 563

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP PERL MODULE

$r->unescape(text)
decodes a text encoded in the “%XX” form.

$r->uri
returns a request URI.

$r->variable(name[, value])
returns or sets the value of the specified variable. Variables are local to
each request.

Nginx, Inc. p.238 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

2.37 Module ngx http proxy module

2.37.1 Summary . 240
2.37.2 Example Configuration 240
2.37.3 Directives . 241

proxy bind . 241
proxy buffer size . 241
proxy buffering . 241
proxy buffers . 242
proxy busy buffers size 242
proxy cache . 242
proxy cache background update 242
proxy cache bypass . 243
proxy cache convert head 243
proxy cache key . 243
proxy cache lock . 243
proxy cache lock age . 244
proxy cache lock timeout 244
proxy cache max range offset 244
proxy cache methods . 244
proxy cache min uses . 245
proxy cache path . 245
proxy cache purge . 247
proxy cache revalidate 247
proxy cache use stale . 248
proxy cache valid . 248
proxy connect timeout 249
proxy cookie domain . 249
proxy cookie flags . 250
proxy cookie path . 251
proxy force ranges . 251
proxy headers hash bucket size 252
proxy headers hash max size 252
proxy hide header . 252
proxy http version . 252
proxy ignore client abort 252
proxy ignore headers . 253
proxy intercept errors 253
proxy limit rate . 253
proxy max temp file size 254
proxy method . 254
proxy next upstream . 254
proxy next upstream timeout 255
proxy next upstream tries 255
proxy no cache . 256
proxy pass . 256

Nginx, Inc. p.239 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy pass header . 257
proxy pass request body 258
proxy pass request headers 258
proxy pass trailers . 258
proxy read timeout . 259
proxy redirect . 259
proxy request buffering 260
proxy send lowat . 261
proxy send timeout . 261
proxy set body . 261
proxy set header . 261
proxy socket keepalive 262
proxy ssl certificate . 262
proxy ssl certificate key 262
proxy ssl ciphers . 263
proxy ssl conf command 263
proxy ssl crl . 263
proxy ssl name . 264
proxy ssl password file 264
proxy ssl protocols . 264
proxy ssl server name 264
proxy ssl session reuse 264
proxy ssl trusted certificate 265
proxy ssl verify . 265
proxy ssl verify depth 265
proxy store . 265
proxy store access . 266
proxy temp file write size 267
proxy temp path . 267

2.37.4 Embedded Variables . 267

2.37.1 Summary

The ngx_http_proxy_module module allows passing requests to
another server.

2.37.2 Example Configuration

location / {
proxy_pass http://localhost:8000;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

}

Nginx, Inc. p.240 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

2.37.3 Directives

proxy bind

Syntax: proxy_bind address [transparent] | off;

Default —

Context: http, server, location
This directive appeared in version 0.8.22.

Makes outgoing connections to a proxied server originate from the specified
local IP address with an optional port (1.11.2). Parameter value can contain
variables (1.3.12). The special value off (1.3.12) cancels the effect of the
proxy_bind directive inherited from the previous configuration level, which
allows the system to auto-assign the local IP address and port.

The transparent parameter (1.11.0) allows outgoing connections to a
proxied server originate from a non-local IP address, for example, from a real
IP address of a client:

proxy_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run nginx
worker processes with the superuser privileges. On Linux it is not required
(1.13.8) as if the transparent parameter is specified, worker processes
inherit the CAP_NET_RAW capability from the master process. It is also
necessary to configure kernel routing table to intercept network traffic from
the proxied server.

proxy buffer size

Syntax: proxy_buffer_size size;

Default 4k|8k

Context: http, server, location

Sets the size of the buffer used for reading the first part of the response
received from the proxied server. This part usually contains a small response
header. By default, the buffer size is equal to one memory page. This is either
4K or 8K, depending on a platform. It can be made smaller, however.

proxy buffering

Syntax: proxy_buffering on | off;

Default on

Context: http, server, location

Enables or disables buffering of responses from the proxied server.
When buffering is enabled, nginx receives a response from the proxied server

as soon as possible, saving it into the buffers set by the proxy buffer size and
proxy buffers directives. If the whole response does not fit into memory, a part
of it can be saved to a temporary file on the disk. Writing to temporary files

Nginx, Inc. p.241 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

is controlled by the proxy max temp file size and proxy temp file write size
directives.

When buffering is disabled, the response is passed to a client synchronously,
immediately as it is received. nginx will not try to read the whole response
from the proxied server. The maximum size of the data that nginx can receive
from the server at a time is set by the proxy buffer size directive.

Buffering can also be enabled or disabled by passing “yes” or “no” in the
X-Accel-Buffering response header field. This capability can be disabled
using the proxy ignore headers directive.

proxy buffers

Syntax: proxy_buffers number size;

Default 8 4k|8k

Context: http, server, location

Sets the number and size of the buffers used for reading a response from
the proxied server, for a single connection. By default, the buffer size is equal
to one memory page. This is either 4K or 8K, depending on a platform.

proxy busy buffers size

Syntax: proxy_busy_buffers_size size;

Default 8k|16k

Context: http, server, location

When buffering of responses from the proxied server is enabled, limits the
total size of buffers that can be busy sending a response to the client while the
response is not yet fully read. In the meantime, the rest of the buffers can be
used for reading the response and, if needed, buffering part of the response to
a temporary file. By default, size is limited by the size of two buffers set by
the proxy buffer size and proxy buffers directives.

proxy cache

Syntax: proxy_cache zone | off;

Default off

Context: http, server, location

Defines a shared memory zone used for caching. The same zone can be
used in several places. Parameter value can contain variables (1.7.9). The off
parameter disables caching inherited from the previous configuration level.

proxy cache background update

Syntax: proxy_cache_background_update on | off;

Default off

Context: http, server, location
This directive appeared in version 1.11.10.

Nginx, Inc. p.242 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

Allows starting a background subrequest to update an expired cache item,
while a stale cached response is returned to the client. Note that it is necessary
to allow the usage of a stale cached response when it is being updated.

proxy cache bypass

Syntax: proxy_cache_bypass string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be taken from a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be taken from the cache:

proxy_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
proxy_cache_bypass $http_pragma $http_authorization;

Can be used along with the proxy no cache directive.

proxy cache convert head

Syntax: proxy_cache_convert_head on | off;

Default on

Context: http, server, location
This directive appeared in version 1.9.7.

Enables or disables the conversion of the “HEAD” method to “GET” for
caching. When the conversion is disabled, the cache key should be configured
to include the $request method.

proxy cache key

Syntax: proxy_cache_key string;

Default $scheme$proxy_host$request_uri

Context: http, server, location

Defines a key for caching, for example

proxy_cache_key "$host$request_uri $cookie_user";

By default, the directive’s value is close to the string

proxy_cache_key $scheme$proxy_hosturiis_args$args;

proxy cache lock

Syntax: proxy_cache_lock on | off;

Default off

Context: http, server, location
This directive appeared in version 1.1.12.

Nginx, Inc. p.243 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

When enabled, only one request at a time will be allowed to populate a new
cache element identified according to the proxy cache key directive by passing
a request to a proxied server. Other requests of the same cache element will
either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the proxy cache lock timeout
directive.

proxy cache lock age

Syntax: proxy_cache_lock_age time;

Default 5s

Context: http, server, location
This directive appeared in version 1.7.8.

If the last request passed to the proxied server for populating a new cache
element has not completed for the specified time, one more request may be
passed to the proxied server.

proxy cache lock timeout

Syntax: proxy_cache_lock_timeout time;

Default 5s

Context: http, server, location
This directive appeared in version 1.1.12.

Sets a timeout for proxy cache lock. When the time expires, the request
will be passed to the proxied server, however, the response will not be cached.

Before 1.7.8, the response could be cached.

proxy cache max range offset

Syntax: proxy_cache_max_range_offset number;

Default —

Context: http, server, location
This directive appeared in version 1.11.6.

Sets an offset in bytes for byte-range requests. If the range is beyond the
offset, the range request will be passed to the proxied server and the response
will not be cached.

proxy cache methods

Syntax: proxy_cache_methods GET | HEAD | POST . . . ;

Default GET HEAD

Context: http, server, location
This directive appeared in version 0.7.59.

If the client request method is listed in this directive then the response will
be cached. “GET” and “HEAD” methods are always added to the list, though

Nginx, Inc. p.244 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

it is recommended to specify them explicitly. See also the proxy no cache
directive.

proxy cache min uses

Syntax: proxy_cache_min_uses number;

Default 1

Context: http, server, location

Sets the number of requests after which the response will be cached.

proxy cache path

Syntax: proxy_cache_path path [levels=levels]

[use_temp_path=on|off] keys_zone=name:size [inactive=time]

[max_size=size] [min_free=size] [manager_files=number]

[manager_sleep=time] [manager_threshold=time]

[loader_files=number] [loader_sleep=time]

[loader_threshold=time] [purger=on|off]

[purger_files=number] [purger_sleep=time]

[purger_threshold=time];

Default —

Context: http

Sets the path and other parameters of a cache. Cache data are stored in
files. The file name in a cache is a result of applying the MD5 function to
the cache key. The levels parameter defines hierarchy levels of a cache:
from 1 to 3, each level accepts values 1 or 2. For example, in the following
configuration

proxy_cache_path /data/nginx/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/nginx/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file
is renamed. Starting from version 0.8.9, temporary files and the cache can
be put on different file systems. However, be aware that in this case a file
is copied across two file systems instead of the cheap renaming operation. It
is thus recommended that for any given location both cache and a directory
holding temporary files are put on the same file system. The directory for
temporary files is set based on the use_temp_path parameter (1.7.10). If
this parameter is omitted or set to the value on, the directory set by the
proxy temp path directive for the given location will be used. If the value is
set to off, temporary files will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a
shared memory zone, whose name and size are configured by the keys_zone
parameter. One megabyte zone can store about 8 thousand keys.

Nginx, Inc. p.245 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

As part of commercial subscription, the shared memory zone also stores
extended cache information, thus, it is required to specify a larger zone size
for the same number of keys. For example, one megabyte zone can store
about 4 thousand keys.

Cached data that are not accessed during the time specified by the
inactive parameter get removed from the cache regardless of their freshness.
By default, inactive is set to 10 minutes.

The special “cache manager” process monitors the maximum cache size set
by the max_size parameter, and the minimum amount of free space set by the
min_free (1.19.1) parameter on the file system with cache. When the size
is exceeded or there is not enough free space, it removes the least recently
used data. The data is removed in iterations configured by manager_-
files, manager_threshold, and manager_sleep parameters (1.11.5).
During one iteration no more than manager_files items are deleted (by
default, 100). The duration of one iteration is limited by the manager_-
threshold parameter (by default, 200 milliseconds). Between iterations,
a pause configured by the manager_sleep parameter (by default, 50
milliseconds) is made.

A minute after the start the special “cache loader” process is activated. It
loads information about previously cached data stored on file system into a
cache zone. The loading is also done in iterations. During one iteration no
more than loader_files items are loaded (by default, 100). Besides, the
duration of one iteration is limited by the loader_threshold parameter
(by default, 200 milliseconds). Between iterations, a pause configured by the
loader_sleep parameter (by default, 50 milliseconds) is made.

Additionally, the following parameters are available as part of our
commercial subscription:

purger=on|off
Instructs whether cache entries that match a wildcard key will be
removed from the disk by the cache purger (1.7.12). Setting the
parameter to on (default is off) will activate the “cache purger” process
that permanently iterates through all cache entries and deletes the entries
that match the wildcard key.

purger_files=number
Sets the number of items that will be scanned during one iteration
(1.7.12). By default, purger_files is set to 10.

purger_threshold=number
Sets the duration of one iteration (1.7.12). By default, purger_-
threshold is set to 50 milliseconds.

purger_sleep=number
Sets a pause between iterations (1.7.12). By default, purger_sleep is
set to 50 milliseconds.

Nginx, Inc. p.246 of 563

https://nginx.com/products/
https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

In versions 1.7.3, 1.7.7, and 1.11.10 cache header format has been changed.
Previously cached responses will be considered invalid after upgrading to a
newer nginx version.

proxy cache purge

Syntax: proxy_cache_purgestring . . . ;

Default —

Context: http, server, location
This directive appeared in version 1.5.7.

Defines conditions under which the request will be considered a cache purge
request. If at least one value of the string parameters is not empty and
is not equal to “0” then the cache entry with a corresponding cache key is
removed. The result of successful operation is indicated by returning the 204
No Content response.

If the cache key of a purge request ends with an asterisk (“*”), all cache
entries matching the wildcard key will be removed from the cache. However,
these entries will remain on the disk until they are deleted for either inactivity,
or processed by the cache purger (1.7.12), or a client attempts to access them.

Example configuration:

proxy_cache_path /data/nginx/cache keys_zone=cache_zone:10m;

map $request_method $purge_method {
PURGE 1;
default 0;

}

server {
...
location / {

proxy_pass http://backend;
proxy_cache cache_zone;
proxy_cache_key $uri;
proxy_cache_purge $purge_method;

}
}

This functionality is available as part of our commercial subscription.

proxy cache revalidate

Syntax: proxy_cache_revalidate on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.7.

Enables revalidation of expired cache items using conditional requests with
the If-Modified-Since and If-None-Match header fields.

Nginx, Inc. p.247 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy cache use stale

Syntax: proxy_cache_use_stale error | timeout | invalid_header |
updating | http_500 | http_502 | http_503 | http_504 |
http_403 | http_404 | http_429 | off . . . ;

Default off

Context: http, server, location

Determines in which cases a stale cached response can be used during
communication with the proxied server. The directive’s parameters match
the parameters of the proxy next upstream directive.

The error parameter also permits using a stale cached response if a
proxied server to process a request cannot be selected.

Additionally, the updating parameter permits using a stale cached
response if it is currently being updated. This allows minimizing the number
of accesses to proxied servers when updating cached data.

Using a stale cached response can also be enabled directly in the response
header for a specified number of seconds after the response became stale
(1.11.10). This has lower priority than using the directive parameters.

• The “stale-while-revalidate” extension of the Cache-Control header
field permits using a stale cached response if it is currently being updated.

• The “stale-if-error” extension of the Cache-Control header field
permits using a stale cached response in case of an error.

To minimize the number of accesses to proxied servers when populating a
new cache element, the proxy cache lock directive can be used.

proxy cache valid

Syntax: proxy_cache_valid [code . . .] time;

Default —

Context: http, server, location

Sets caching time for different response codes. For example, the following
directives

proxy_cache_valid 200 302 10m;
proxy_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute
for responses with code 404.

If only caching time is specified

proxy_cache_valid 5m;

then only 200, 301, and 302 responses are cached.
In addition, the any parameter can be specified to cache any responses:

Nginx, Inc. p.248 of 563

https://datatracker.ietf.org/doc/html/rfc5861#section-3
https://datatracker.ietf.org/doc/html/rfc5861#section-4

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy_cache_valid 200 302 10m;
proxy_cache_valid 301 1h;
proxy_cache_valid any 1m;

Parameters of caching can also be set directly in the response header. This
has higher priority than setting of caching time using the directive.

• The X-Accel-Expires header field sets caching time of a response in
seconds. The zero value disables caching for a response. If the value
starts with the @ prefix, it sets an absolute time in seconds since Epoch,
up to which the response may be cached.

• If the header does not include the X-Accel-Expires field, parameters
of caching may be set in the header fields Expires or Cache-Control.

• If the header includes the Set-Cookie field, such a response will not
be cached.

• If the header includes the Vary field with the special value “*”, such a
response will not be cached (1.7.7). If the header includes the Vary field
with another value, such a response will be cached taking into account
the corresponding request header fields (1.7.7).

Processing of one or more of these response header fields can be disabled using
the proxy ignore headers directive.

proxy connect timeout

Syntax: proxy_connect_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for establishing a connection with a proxied server. It
should be noted that this timeout cannot usually exceed 75 seconds.

proxy cookie domain

Syntax: proxy_cookie_domain off;

Syntax: proxy_cookie_domain domain replacement;

Default off

Context: http, server, location
This directive appeared in version 1.1.15.

Sets a text that should be changed in the domain attribute of the
Set-Cookie header fields of a proxied server response. Suppose a
proxied server returned the Set-Cookie header field with the attribute
“domain=localhost”. The directive

proxy_cookie_domain localhost example.org;

Nginx, Inc. p.249 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

will rewrite this attribute to “domain=example.org”.
A dot at the beginning of the domain and replacement strings and the

domain attribute is ignored. Matching is case-insensitive.
The domain and replacement strings can contain variables:

proxy_cookie_domain www.$host $host;

The directive can also be specified using regular expressions. In this case,
domain should start from the “~” symbol. A regular expression can contain
named and positional captures, and replacement can reference them:

proxy_cookie_domain ~\.(?P<sl_domain>[-0-9a-z]+\.[a-z]+)$ $sl_domain;

Several proxy_cookie_domain directives can be specified on the same
level:

proxy_cookie_domain localhost example.org;
proxy_cookie_domain ~\.([a-z]+\.[a-z]+)$ $1;

If several directives can be applied to the cookie, the first matching directive
will be chosen.

The off parameter cancels the effect of the proxy_cookie_domain
directives inherited from the previous configuration level.

proxy cookie flags

Syntax: proxy_cookie_flags off | cookie [flag . . .];

Default off

Context: http, server, location
This directive appeared in version 1.19.3.

Sets one or more flags for the cookie. The cookie can contain text,
variables, and their combinations. The flag can contain text, variables, and
their combinations (1.19.8). The secure, httponly, samesite=strict,
samesite=lax, samesite=none parameters add the corresponding flags.
The nosecure, nohttponly, nosamesite parameters remove the
corresponding flags.

The cookie can also be specified using regular expressions. In this case,
cookie should start from the “~” symbol.

Several proxy_cookie_flags directives can be specified on the same
configuration level:

proxy_cookie_flags one httponly;
proxy_cookie_flags ~ nosecure samesite=strict;

If several directives can be applied to the cookie, the first matching directive
will be chosen. In the example, the httponly flag is added to the cookie one,
for all other cookies the samesite=strict flag is added and the secure
flag is deleted.

Nginx, Inc. p.250 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

The off parameter cancels the effect of the proxy_cookie_flags
directives inherited from the previous configuration level.

proxy cookie path

Syntax: proxy_cookie_path off;

Syntax: proxy_cookie_path path replacement;

Default off

Context: http, server, location
This directive appeared in version 1.1.15.

Sets a text that should be changed in the path attribute of the
Set-Cookie header fields of a proxied server response. Suppose a proxied
server returned the Set-Cookie header field with the attribute “path=/
two/some/uri/”. The directive

proxy_cookie_path /two/ /;

will rewrite this attribute to “path=/some/uri/”.
The path and replacement strings can contain variables:

proxy_cookie_path $uri /some$uri;

The directive can also be specified using regular expressions. In this case,
path should either start from the “~” symbol for a case-sensitive matching, or
from the “~*” symbols for case-insensitive matching. The regular expression
can contain named and positional captures, and replacement can reference
them:

proxy_cookie_path ~*^/user/([^/]+) /u/$1;

Several proxy_cookie_path directives can be specified on the same
level:

proxy_cookie_path /one/ /;
proxy_cookie_path / /two/;

If several directives can be applied to the cookie, the first matching directive
will be chosen.

The off parameter cancels the effect of the proxy_cookie_path
directives inherited from the previous configuration level.

proxy force ranges

Syntax: proxy_force_ranges on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.7.

Enables byte-range support for both cached and uncached responses from
the proxied server regardless of the Accept-Ranges field in these responses.

Nginx, Inc. p.251 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy headers hash bucket size

Syntax: proxy_headers_hash_bucket_size size;

Default 64

Context: http, server, location

Sets the bucket size for hash tables used by the proxy hide header and
proxy set header directives. The details of setting up hash tables are provided
in a separate document.

proxy headers hash max size

Syntax: proxy_headers_hash_max_size size;

Default 512

Context: http, server, location

Sets the maximum size of hash tables used by the proxy hide header and
proxy set header directives. The details of setting up hash tables are provided
in a separate document.

proxy hide header

Syntax: proxy_hide_header field;

Default —

Context: http, server, location

By default, nginx does not pass the header fields Date, Server, X-Pad,
and X-Accel-... from the response of a proxied server to a client. The
proxy_hide_header directive sets additional fields that will not be passed.
If, on the contrary, the passing of fields needs to be permitted, the proxy -
pass header directive can be used.

proxy http version

Syntax: proxy_http_version 1.0 | 1.1;

Default 1.0

Context: http, server, location
This directive appeared in version 1.1.4.

Sets the HTTP protocol version for proxying. By default, version 1.0 is
used. Version 1.1 is recommended for use with keepalive connections and
NTLM authentication.

proxy ignore client abort

Syntax: proxy_ignore_client_abort on | off;

Default off

Context: http, server, location

Determines whether the connection with a proxied server should be closed
when a client closes the connection without waiting for a response.

Nginx, Inc. p.252 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy ignore headers

Syntax: proxy_ignore_headers field . . . ;

Default —

Context: http, server, location

Disables processing of certain response header fields from
the proxied server. The following fields can be ignored:
X-Accel-Redirect, X-Accel-Expires, X-Accel-Limit-Rate
(1.1.6), X-Accel-Buffering (1.1.6), X-Accel-Charset (1.1.6),
Expires, Cache-Control, Set-Cookie (0.8.44), and Vary (1.7.7).

If not disabled, processing of these header fields has the following effect:

• X-Accel-Expires, Expires, Cache-Control, Set-Cookie, and
Vary set the parameters of response caching;

• X-Accel-Redirect performs an internal redirect to the specified URI;

• X-Accel-Limit-Rate sets the rate limit for transmission of a
response to a client;

• X-Accel-Buffering enables or disables buffering of a response;

• X-Accel-Charset sets the desired charset of a response.

proxy intercept errors

Syntax: proxy_intercept_errors on | off;

Default off

Context: http, server, location

Determines whether proxied responses with codes greater than or equal to
300 should be passed to a client or be intercepted and redirected to nginx for
processing with the error page directive.

proxy limit rate

Syntax: proxy_limit_rate rate;

Default 0

Context: http, server, location
This directive appeared in version 1.7.7.

Limits the speed of reading the response from the proxied server. The rate
is specified in bytes per second. The zero value disables rate limiting. The limit
is set per a request, and so if nginx simultaneously opens two connections to
the proxied server, the overall rate will be twice as much as the specified limit.
The limitation works only if buffering of responses from the proxied server is
enabled. Parameter value can contain variables (1.27.0).

Nginx, Inc. p.253 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy max temp file size

Syntax: proxy_max_temp_file_size size;

Default 1024m

Context: http, server, location

When buffering of responses from the proxied server is enabled, and the
whole response does not fit into the buffers set by the proxy buffer size and
proxy buffers directives, a part of the response can be saved to a temporary file.
This directive sets the maximum size of the temporary file. The size of data
written to the temporary file at a time is set by the proxy temp file write size
directive.

The zero value disables buffering of responses to temporary files.

This restriction does not apply to responses that will be cached or stored
on disk.

proxy method

Syntax: proxy_method method;

Default —

Context: http, server, location

Specifies the HTTP method to use in requests forwarded to the proxied
server instead of the method from the client request. Parameter value can
contain variables (1.11.6).

proxy next upstream

Syntax: proxy_next_upstream error | timeout | invalid_header |
http_500 | http_502 | http_503 | http_504 | http_403 |
http_404 | http_429 | non_idempotent | off . . . ;

Default error timeout

Context: http, server, location

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_header
a server returned an empty or invalid response;

http_500
a server returned a response with the code 500;

http_502
a server returned a response with the code 502;

Nginx, Inc. p.254 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

http_503
a server returned a response with the code 503;

http_504
a server returned a response with the code 504;

http_403
a server returned a response with the code 403;

http_404
a server returned a response with the code 404;

http_429
a server returned a response with the code 429 (1.11.13);

non_idempotent
normally, requests with a non-idempotent method (POST, LOCK, PATCH)
are not passed to the next server if a request has been sent to an
upstream server (1.9.13); enabling this option explicitly allows retrying
such requests;

off
disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of
communication with a server. The cases of error, timeout and invalid_-
header are always considered unsuccessful attempts, even if they are not
specified in the directive. The cases of http_500, http_502, http_503,
http_504, and http_429 are considered unsuccessful attempts only if they
are specified in the directive. The cases of http_403 and http_404 are
never considered unsuccessful attempts.

Passing a request to the next server can be limited by the number of tries
and by time.

proxy next upstream timeout

Syntax: proxy_next_upstream_timeout time;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

proxy next upstream tries

Syntax: proxy_next_upstream_tries number;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Nginx, Inc. p.255 of 563

https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.2

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

proxy no cache

Syntax: proxy_no_cache string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be saved to a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be saved:

proxy_no_cache $cookie_nocache $arg_nocache$arg_comment;
proxy_no_cache $http_pragma $http_authorization;

Can be used along with the proxy cache bypass directive.

proxy pass

Syntax: proxy_pass URL;

Default —

Context: location, if in location, limit except

Sets the protocol and address of a proxied server and an optional URI to
which a location should be mapped. As a protocol, “http” or “https” can be
specified. The address can be specified as a domain name or IP address, and
an optional port:

proxy_pass http://localhost:8000/uri/;

or as a UNIX-domain socket path specified after the word “unix” and
enclosed in colons:

proxy_pass http://unix:/tmp/backend.socket:/uri/;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

Parameter value can contain variables. In this case, if an address is specified
as a domain name, the name is searched among the described server groups,
and, if not found, is determined using a resolver.

A request URI is passed to the server as follows:

• If the proxy_pass directive is specified with a URI, then when a request
is passed to the server, the part of a normalized request URI matching
the location is replaced by a URI specified in the directive:

location /name/ {
proxy_pass http://127.0.0.1/remote/;

}

Nginx, Inc. p.256 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

• If proxy_pass is specified without a URI, the request URI is passed to
the server in the same form as sent by a client when the original request is
processed, or the full normalized request URI is passed when processing
the changed URI:

location /some/path/ {
proxy_pass http://127.0.0.1;

}

Before version 1.1.12, if proxy_pass is specified without a URI, the
original request URI might be passed instead of the changed URI in
some cases.

In some cases, the part of a request URI to be replaced cannot be
determined:

• When location is specified using a regular expression, and also inside
named locations.

In these cases, proxy_pass should be specified without a URI.

• When the URI is changed inside a proxied location using the rewrite
directive, and this same configuration will be used to process a request
(break):

location /name/ {
rewrite /name/([^/]+) /users?name=$1 break;
proxy_pass http://127.0.0.1;

}

In this case, the URI specified in the directive is ignored and the full
changed request URI is passed to the server.

• When variables are used in proxy_pass:

location /name/ {
proxy_pass http://127.0.0.1$request_uri;

}

In this case, if URI is specified in the directive, it is passed to the server
as is, replacing the original request URI.

WebSocket proxying requires special configuration and is supported since
version 1.3.13.

proxy pass header

Syntax: proxy_pass_header field;

Default —

Context: http, server, location

Permits passing otherwise disabled header fields from a proxied server to a
client.

Nginx, Inc. p.257 of 563

https://nginx.org/en/docs/http/websocket.html

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy pass request body

Syntax: proxy_pass_request_body on | off;

Default on

Context: http, server, location

Indicates whether the original request body is passed to the proxied server.

location /x-accel-redirect-here/ {
proxy_method GET;
proxy_pass_request_body off;
proxy_set_header Content-Length "";

proxy_pass ...
}

See also the proxy set header and proxy pass request headers directives.

proxy pass request headers

Syntax: proxy_pass_request_headers on | off;

Default on

Context: http, server, location

Indicates whether the header fields of the original request are passed to the
proxied server.

location /x-accel-redirect-here/ {
proxy_method GET;
proxy_pass_request_headers off;
proxy_pass_request_body off;

proxy_pass ...
}

See also the proxy set header and proxy pass request body directives.

proxy pass trailers

Syntax: proxy_pass_trailers on | off;

Default off

Context: http, server, location
This directive appeared in version 1.27.2.

Permits passing trailer fields from a proxied server to a client.

A trailer section in HTTP/1.1 is explicitly enabled.

location / {
proxy_http_version 1.1;
proxy_set_header Connection "te";
proxy_set_header TE "trailers";
proxy_pass_trailers on;

proxy_pass ...
}

Nginx, Inc. p.258 of 563

https://datatracker.ietf.org/doc/html/rfc9110#section-6.5.1

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy read timeout

Syntax: proxy_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the proxied server. The
timeout is set only between two successive read operations, not for the
transmission of the whole response. If the proxied server does not transmit
anything within this time, the connection is closed.

proxy redirect

Syntax: proxy_redirect default;

Syntax: proxy_redirect off;

Syntax: proxy_redirect redirect replacement;

Default default

Context: http, server, location

Sets the text that should be changed in the Location and Refresh
header fields of a proxied server response. Suppose a proxied server returned
the header field “Location: http://localhost:8000/two/some/
uri/”. The directive

proxy_redirect http://localhost:8000/two/ http://frontend/one/;

will rewrite this string to “Location: http://frontend/one/
some/uri/”.

A server name may be omitted in the replacement string:

proxy_redirect http://localhost:8000/two/ /;

then the primary server’s name and port, if different from 80, will be
inserted.

The default replacement specified by the default parameter uses the
parameters of the location and proxy pass directives. Hence, the two
configurations below are equivalent:

location /one/ {
proxy_pass http://upstream:port/two/;
proxy_redirect default;

location /one/ {
proxy_pass http://upstream:port/two/;
proxy_redirect http://upstream:port/two/ /one/;

The default parameter is not permitted if proxy pass is specified using
variables.

A replacement string can contain variables:

Nginx, Inc. p.259 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy_redirect http://localhost:8000/ http://$host:$server_port/;

A redirect can also contain (1.1.11) variables:

proxy_redirect http://$proxy_host:8000/ /;

The directive can be specified (1.1.11) using regular expressions. In this
case, redirect should either start with the “~” symbol for a case-sensitive
matching, or with the “~*” symbols for case-insensitive matching. The regular
expression can contain named and positional captures, and replacement can
reference them:

proxy_redirect ~^(http://[^:]+):\d+(/.+)$ $1$2;
proxy_redirect ~*/user/([^/]+)/(.+)$ http://$1.example.com/$2;

Several proxy_redirect directives can be specified on the same level:

proxy_redirect default;
proxy_redirect http://localhost:8000/ /;
proxy_redirect http://www.example.com/ /;

If several directives can be applied to the header fields of a proxied server
response, the first matching directive will be chosen.

The off parameter cancels the effect of the proxy_redirect directives
inherited from the previous configuration level.

Using this directive, it is also possible to add host names to relative redirects
issued by a proxied server:

proxy_redirect / /;

proxy request buffering

Syntax: proxy_request_buffering on | off;

Default on

Context: http, server, location
This directive appeared in version 1.7.11.

Enables or disables buffering of a client request body.
When buffering is enabled, the entire request body is read from the client

before sending the request to a proxied server.
When buffering is disabled, the request body is sent to the proxied server

immediately as it is received. In this case, the request cannot be passed to the
next server if nginx already started sending the request body.

When HTTP/1.1 chunked transfer encoding is used to send the original
request body, the request body will be buffered regardless of the directive
value unless HTTP/1.1 is enabled for proxying.

Nginx, Inc. p.260 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy send lowat

Syntax: proxy_send_lowat size;

Default 0

Context: http, server, location

If the directive is set to a non-zero value, nginx will try to minimize the
number of send operations on outgoing connections to a proxied server by using
either NOTE_LOWAT flag of the kqueue method, or the SO_SNDLOWAT socket
option, with the specified size.

This directive is ignored on Linux, Solaris, and Windows.

proxy send timeout

Syntax: proxy_send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a request to the proxied server. The timeout
is set only between two successive write operations, not for the transmission of
the whole request. If the proxied server does not receive anything within this
time, the connection is closed.

proxy set body

Syntax: proxy_set_body value;

Default —

Context: http, server, location

Allows redefining the request body passed to the proxied server. The value
can contain text, variables, and their combination.

proxy set header

Syntax: proxy_set_header field value;

Default Host $proxy_host

Default Connection close

Context: http, server, location

Allows redefining or appending fields to the request header passed to the
proxied server. The value can contain text, variables, and their combinations.
These directives are inherited from the previous configuration level if and only
if there are no proxy_set_header directives defined on the current level.
By default, only two fields are redefined:

proxy_set_header Host $proxy_host;
proxy_set_header Connection close;

If caching is enabled, the header fields If-Modified-Since,
If-Unmodified-Since, If-None-Match, If-Match, Range, and
If-Range from the original request are not passed to the proxied server.

Nginx, Inc. p.261 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

An unchanged Host request header field can be passed like this:

proxy_set_header Host $http_host;

However, if this field is not present in a client request header then nothing
will be passed. In such a case it is better to use the $host variable - its value
equals the server name in the Host request header field or the primary server
name if this field is not present:

proxy_set_header Host $host;

In addition, the server name can be passed together with the port of the
proxied server:

proxy_set_header Host $host:$proxy_port;

If the value of a header field is an empty string then this field will not be
passed to a proxied server:

proxy_set_header Accept-Encoding "";

proxy socket keepalive

Syntax: proxy_socket_keepalive on | off;

Default off

Context: http, server, location
This directive appeared in version 1.15.6.

Configures the “TCP keepalive” behavior for outgoing connections to a
proxied server. By default, the operating system’s settings are in effect for the
socket. If the directive is set to the value “on”, the SO_KEEPALIVE socket
option is turned on for the socket.

proxy ssl certificate

Syntax: proxy_ssl_certificate file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with the certificate in the PEM format used for
authentication to a proxied HTTPS server.

Since version 1.21.0, variables can be used in the file name.

proxy ssl certificate key

Syntax: proxy_ssl_certificate_key file;

Default —

Context: http, server, location

Nginx, Inc. p.262 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

This directive appeared in version 1.7.8.

Specifies a file with the secret key in the PEM format used for
authentication to a proxied HTTPS server.

The value engine:name:id can be specified instead of the file (1.7.9), which
loads a secret key with a specified id from the OpenSSL engine name.

Since version 1.21.0, variables can be used in the file name.

proxy ssl ciphers

Syntax: proxy_ssl_ciphers ciphers;

Default DEFAULT

Context: http, server, location
This directive appeared in version 1.5.6.

Specifies the enabled ciphers for requests to a proxied HTTPS server. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

proxy ssl conf command

Syntax: proxy_ssl_conf_command name value;

Default —

Context: http, server, location
This directive appeared in version 1.19.4.

Sets arbitrary OpenSSL configuration commands when establishing a
connection with the proxied HTTPS server.

The directive is supported when using OpenSSL 1.0.2 or higher.

Several proxy_ssl_conf_command directives can be specified on the
same level. These directives are inherited from the previous configuration level
if and only if there are no proxy_ssl_conf_command directives defined on
the current level.

Note that configuring OpenSSL directly might result in unexpected
behavior.

proxy ssl crl

Syntax: proxy_ssl_crl file;

Default —

Context: http, server, location
This directive appeared in version 1.7.0.

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify the certificate of the proxied HTTPS server.

Nginx, Inc. p.263 of 563

https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy ssl name

Syntax: proxy_ssl_name name;

Default $proxy_host

Context: http, server, location
This directive appeared in version 1.7.0.

Allows overriding the server name used to verify the certificate of the
proxied HTTPS server and to be passed through SNI when establishing a
connection with the proxied HTTPS server.

By default, the host part of the proxy pass URL is used.

proxy ssl password file

Syntax: proxy_ssl_password_file file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

proxy ssl protocols

Syntax: proxy_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1]

[TLSv1.2] [TLSv1.3];

Default TLSv1 TLSv1.1 TLSv1.2 TLSv1.3

Context: http, server, location
This directive appeared in version 1.5.6.

Enables the specified protocols for requests to a proxied HTTPS server.

The TLSv1.3 parameter is used by default since 1.23.4.

proxy ssl server name

Syntax: proxy_ssl_server_name on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.0.

Enables or disables passing of the server name through TLS Server Name
Indication extension (SNI, RFC 6066) when establishing a connection with the
proxied HTTPS server.

proxy ssl session reuse

Syntax: proxy_ssl_session_reuse on | off;

Default on

Context: http, server, location

Nginx, Inc. p.264 of 563

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

Determines whether SSL sessions can be reused when working with
the proxied server. If the errors “SSL3_GET_FINISHED:digest check
failed” appear in the logs, try disabling session reuse.

proxy ssl trusted certificate

Syntax: proxy_ssl_trusted_certificate file;

Default —

Context: http, server, location
This directive appeared in version 1.7.0.

Specifies a file with trusted CA certificates in the PEM format used to
verify the certificate of the proxied HTTPS server.

proxy ssl verify

Syntax: proxy_ssl_verify on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.0.

Enables or disables verification of the proxied HTTPS server certificate.

proxy ssl verify depth

Syntax: proxy_ssl_verify_depth number;

Default 1

Context: http, server, location
This directive appeared in version 1.7.0.

Sets the verification depth in the proxied HTTPS server certificates chain.

proxy store

Syntax: proxy_store on | off | string;

Default off

Context: http, server, location

Enables saving of files to a disk. The on parameter saves files with paths
corresponding to the directives alias or root. The off parameter disables
saving of files. In addition, the file name can be set explicitly using the string
with variables:

proxy_store /data/www$original_uri;

The modification time of files is set according to the received
Last-Modified response header field. The response is first written to a
temporary file, and then the file is renamed. Starting from version 0.8.9,
temporary files and the persistent store can be put on different file systems.
However, be aware that in this case a file is copied across two file systems

Nginx, Inc. p.265 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by
the proxy temp path directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files,
e.g.:

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

proxy_pass http://backend/;
proxy_store on;
proxy_store_access user:rw group:rw all:r;
proxy_temp_path /data/temp;

alias /data/www/;
}

or like this:

location /images/ {
root /data/www;
error_page 404 = @fetch;

}

location @fetch {
internal;

proxy_pass http://backend;
proxy_store on;
proxy_store_access user:rw group:rw all:r;
proxy_temp_path /data/temp;

root /data/www;
}

proxy store access

Syntax: proxy_store_access users:permissions . . . ;

Default user:rw

Context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

proxy_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user
permissions may be omitted:

proxy_store_access group:rw all:r;

Nginx, Inc. p.266 of 563

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP PROXY MODULE

proxy temp file write size

Syntax: proxy_temp_file_write_size size;

Default 8k|16k

Context: http, server, location

Limits the size of data written to a temporary file at a time, when buffering
of responses from the proxied server to temporary files is enabled. By default,
size is limited by two buffers set by the proxy buffer size and proxy buffers
directives. The maximum size of a temporary file is set by the proxy max -
temp file size directive.

proxy temp path

Syntax: proxy_temp_path path [level1 [level2 [level3]]];

Default proxy_temp

Context: http, server, location

Defines a directory for storing temporary files with data received from
proxied servers. Up to three-level subdirectory hierarchy can be used
underneath the specified directory. For example, in the following configuration

proxy_temp_path /spool/nginx/proxy_temp 1 2;

a temporary file might look like this:

/spool/nginx/proxy_temp/7/45/00000123457

See also the use_temp_path parameter of the proxy cache path
directive.

2.37.4 Embedded Variables

The ngx_http_proxy_module module supports embedded variables
that can be used to compose headers using the proxy set header directive:

$proxy host
name and port of a proxied server as specified in the proxy pass directive;

$proxy port
port of a proxied server as specified in the proxy pass directive, or the
protocol’s default port;

$proxy add x forwarded for
the X-Forwarded-For client request header field with the
$remote addr variable appended to it, separated by a comma. If the
X-Forwarded-For field is not present in the client request header, the
$proxy add x forwarded for variable is equal to the $remote addr vari-
able.

Nginx, Inc. p.267 of 563

CHAPTER 2. HTTP SERVER MODULES 2.38. MODULE NGX HTTP PRO ... MODULE

2.38 Module ngx http proxy protocol ven-

dor module

2.38.1 Summary . 268
2.38.2 Example Configuration 268
2.38.3 Embedded Variables . 268

2.38.1 Summary

The ngx_http_proxy_protocol_vendor_module module (1.23.3)
allows obtaining additional information about a connection in cloud platforms
from application-specific TLVs of the PROXY protocol header.

Supported cloud platforms:

• Amazon Web Services

• Google Cloud Platform

• Microsoft Azure

The PROXY protocol must be previously enabled by setting the proxy_-
protocol parameter in the listen directive.

This module is available as part of our commercial subscription.

2.38.2 Example Configuration

proxy_set_header X-Conn-ID $proxy_protocol_tlv_gcp_conn_id;

server {
listen 80 proxy_protocol;
listen 443 ssl proxy_protocol;
...

}

2.38.3 Embedded Variables

$proxy protocol tlv aws vpce id
TLV value from the PROXY Protocol header representing the ID of AWS
VPC endpoint

$proxy protocol tlv azure pel id
TLV value from the PROXY Protocol header representing the LinkID of
Azure private endpoint

$proxy protocol tlv gcp conn id
TLV value from the PROXY Protocol header representing Google Cloud
PSC connection ID

Nginx, Inc. p.268 of 563

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://nginx.com/products/
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#proxy-protocol
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#proxy-protocol
https://learn.microsoft.com/en-us/azure/private-link/private-link-service-overview#getting-connection-information-using-tcp-proxy-v2
https://learn.microsoft.com/en-us/azure/private-link/private-link-service-overview#getting-connection-information-using-tcp-proxy-v2
https://cloud.google.com/vpc/docs/configure-private-service-connect-producer#proxy-protocol
https://cloud.google.com/vpc/docs/configure-private-service-connect-producer#proxy-protocol

CHAPTER 2. HTTP SERVER MODULES 2.39. MODULE NGX HTTP RANDOM INDEX MODULE

2.39 Module ngx http random index module

2.39.1 Summary . 269
2.39.2 Example Configuration 269
2.39.3 Directives . 269

random index . 269

2.39.1 Summary

The ngx_http_random_index_module module processes requests
ending with the slash character (‘/’) and picks a random file in a directory
to serve as an index file. The module is processed before the ngx http index -
module module.

This module is not built by default, it should be enabled with the
--with-http_random_index_module configuration parameter.

2.39.2 Example Configuration

location / {
random_index on;

}

2.39.3 Directives

random index

Syntax: random_index on | off;

Default off

Context: location

Enables or disables module processing in a surrounding location.

Nginx, Inc. p.269 of 563

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP REALIP MODULE

2.40 Module ngx http realip module

2.40.1 Summary . 270
2.40.2 Example Configuration 270
2.40.3 Directives . 270

set real ip from . 270
real ip header . 270
real ip recursive . 271

2.40.4 Embedded Variables . 271

2.40.1 Summary

The ngx_http_realip_module module is used to change the client
address and optional port to those sent in the specified header field.

This module is not built by default, it should be enabled with the
--with-http_realip_module configuration parameter.

2.40.2 Example Configuration

set_real_ip_from 192.168.1.0/24;
set_real_ip_from 192.168.2.1;
set_real_ip_from 2001:0db8::/32;
real_ip_header X-Forwarded-For;
real_ip_recursive on;

2.40.3 Directives

set real ip from

Syntax: set_real_ip_from address | CIDR | unix:;

Default —

Context: http, server, location

Defines trusted addresses that are known to send correct replacement
addresses. If the special value unix: is specified, all UNIX-domain sockets
will be trusted. Trusted addresses may also be specified using a hostname
(1.13.1).

IPv6 addresses are supported starting from versions 1.3.0 and 1.2.1.

real ip header

Syntax: real_ip_header field | X-Real-IP | X-Forwarded-For |
proxy_protocol;

Default X-Real-IP

Context: http, server, location

Nginx, Inc. p.270 of 563

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP REALIP MODULE

Defines the request header field whose value will be used to replace the
client address.

The request header field value that contains an optional port is also used
to replace the client port (1.11.0). The address and port should be specified
according to RFC 3986.

The proxy_protocol parameter (1.5.12) changes the client address to
the one from the PROXY protocol header. The PROXY protocol must be
previously enabled by setting the proxy_protocol parameter in the listen
directive.

real ip recursive

Syntax: real_ip_recursive on | off;

Default off

Context: http, server, location
This directive appeared in versions 1.3.0 and 1.2.1.

If recursive search is disabled, the original client address that matches one of
the trusted addresses is replaced by the last address sent in the request header
field defined by the real ip header directive. If recursive search is enabled, the
original client address that matches one of the trusted addresses is replaced by
the last non-trusted address sent in the request header field.

2.40.4 Embedded Variables

$realip remote addr
keeps the original client address (1.9.7)

$realip remote port
keeps the original client port (1.11.0)

Nginx, Inc. p.271 of 563

https://datatracker.ietf.org/doc/html/rfc3986

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP REFERER MODULE

2.41 Module ngx http referer module

2.41.1 Summary . 272
2.41.2 Example Configuration 272
2.41.3 Directives . 272

referer hash bucket size 272
referer hash max size . 272
valid referers . 273

2.41.4 Embedded Variables . 273

2.41.1 Summary

The ngx_http_referer_module module is used to block access to a
site for requests with invalid values in the Referer header field. It should
be kept in mind that fabricating a request with an appropriate Referer field
value is quite easy, and so the intended purpose of this module is not to block
such requests thoroughly but to block the mass flow of requests sent by regular
browsers. It should also be taken into consideration that regular browsers may
not send the Referer field even for valid requests.

2.41.2 Example Configuration

valid_referers none blocked server_names

.example.com example. www.example.org/galleries/
~\.google\.;

if ($invalid_referer) {
return 403;

}

2.41.3 Directives

referer hash bucket size

Syntax: referer_hash_bucket_size size;

Default 64

Context: server, location
This directive appeared in version 1.0.5.

Sets the bucket size for the valid referers hash tables. The details of setting
up hash tables are provided in a separate document.

referer hash max size

Syntax: referer_hash_max_size size;

Default 2048

Context: server, location
This directive appeared in version 1.0.5.

Nginx, Inc. p.272 of 563

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP REFERER MODULE

Sets the maximum size of the valid referers hash tables. The details of
setting up hash tables are provided in a separate document.

valid referers

Syntax: valid_referers none | blocked | server_names | string . . . ;

Default —

Context: server, location

Specifies the Referer request header field values that will cause the
embedded $invalid referer variable to be set to an empty string. Otherwise,
the variable will be set to “1”. Search for a match is case-insensitive.

Parameters can be as follows:

none
the Referer field is missing in the request header;

blocked
the Referer field is present in the request header, but its value has
been deleted by a firewall or proxy server; such values are strings that
do not start with “http://” or “https://”;

server_names
the Referer request header field contains one of the server names;

arbitrary string
defines a server name and an optional URI prefix. A server name can
have an “*” at the beginning or end. During the checking, the server’s
port in the Referer field is ignored;

regular expression
the first symbol should be a “~”. It should be noted that an expression
will be matched against the text starting after the “http://” or
“https://”.

Example:

valid_referers none blocked server_names

.example.com example. www.example.org/galleries/
~\.google\.;

2.41.4 Embedded Variables

$invalid referer
Empty string, if the Referer request header field value is considered
valid, otherwise “1”.

Nginx, Inc. p.273 of 563

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP REWRITE MODULE

2.42 Module ngx http rewrite module

2.42.1 Summary . 274
2.42.2 Directives . 274

break . 274
if . 275
return . 276
rewrite . 276
rewrite log . 278
set . 278
uninitialized variable warn 278

2.42.3 Internal Implementation 278

2.42.1 Summary

The ngx_http_rewrite_module module is used to change request URI
using PCRE regular expressions, return redirects, and conditionally select
configurations.

The break, if, return, rewrite, and set directives are processed in the
following order:

• the directives of this module specified on the server level are executed
sequentially;

• repeatedly:

– a location is searched based on a request URI;

– the directives of this module specified inside the found location are
executed sequentially;

– the loop is repeated if a request URI was rewritten, but not more
than 10 times.

2.42.2 Directives

break

Syntax: break;

Default —

Context: server, location, if

Stops processing the current set of ngx_http_rewrite_module
directives.

If a directive is specified inside the location, further processing of the
request continues in this location.

Example:

Nginx, Inc. p.274 of 563

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP REWRITE MODULE

if ($slow) {
limit_rate 10k;
break;

}

if

Syntax: if (condition) { . . . }
Default —

Context: server, location

The specified condition is evaluated. If true, this module directives specified
inside the braces are executed, and the request is assigned the configuration
inside the if directive. Configurations inside the if directives are inherited
from the previous configuration level.

A condition may be any of the following:

• a variable name; false if the value of a variable is an empty string or “0”;

Before version 1.0.1, any string starting with “0” was considered a false
value.

• comparison of a variable with a string using the “=” and “!=” operators;

• matching of a variable against a regular expression using the“~”(for case-
sensitive matching) and “~*” (for case-insensitive matching) operators.
Regular expressions can contain captures that are made available for later
reuse in the $1..$9 variables. Negative operators “!~” and “!~*” are also
available. If a regular expression includes the “}” or “;” characters, the
whole expressions should be enclosed in single or double quotes.

• checking of a file existence with the “-f” and “!-f” operators;

• checking of a directory existence with the “-d” and “!-d” operators;

• checking of a file, directory, or symbolic link existence with the “-e” and
“!-e” operators;

• checking for an executable file with the “-x” and “!-x” operators.

Examples:

if ($http_user_agent ~ MSIE) {
rewrite ^(.*)$ /msie/$1 break;

}

if ($http_cookie ~* "id=([^;]+)(?:;|$)") {
set $id $1;

}

if ($request_method = POST) {
return 405;

Nginx, Inc. p.275 of 563

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP REWRITE MODULE

}

if ($slow) {
limit_rate 10k;

}

if ($invalid_referer) {
return 403;

}

A value of the $invalid referer embedded variable is set by the valid -
referers directive.

return

Syntax: return code [text];

Syntax: return code URL;

Syntax: return URL;

Default —

Context: server, location, if

Stops processing and returns the specified code to a client. The non-
standard code 444 closes a connection without sending a response header.

Starting from version 0.8.42, it is possible to specify either a redirect URL
(for codes 301, 302, 303, 307, and 308) or the response body text (for other
codes). A response body text and redirect URL can contain variables. As a
special case, a redirect URL can be specified as a URI local to this server, in
which case the full redirect URL is formed according to the request scheme
($scheme) and the server name in redirect and port in redirect directives.

In addition, a URL for temporary redirect with the code 302 can be specified
as the sole parameter. Such a parameter should start with the “http://”,
“https://”, or “$scheme” string. A URL can contain variables.

Only the following codes could be returned before version 0.7.51: 204,
400, 402 — 406, 408, 410, 411, 413, 416, and 500 — 504.

The code 307 was not treated as a redirect until versions 1.1.16 and 1.0.13.

The code 308 was not treated as a redirect until version 1.13.0.

See also the error page directive.

rewrite

Syntax: rewrite regex replacement [flag];

Default —

Context: server, location, if

If the specified regular expression matches a request URI, URI is changed
as specified in the replacement string. The rewrite directives are executed

Nginx, Inc. p.276 of 563

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP REWRITE MODULE

sequentially in order of their appearance in the configuration file. It is possible
to terminate further processing of the directives using flags. If a replacement
string starts with “http://”, “https://”, or “$scheme”, the processing
stops and the redirect is returned to a client.

An optional flag parameter can be one of:

last
stops processing the current set of ngx_http_rewrite_module
directives and starts a search for a new location matching the changed
URI;

break
stops processing the current set of ngx_http_rewrite_module
directives as with the break directive;

redirect
returns a temporary redirect with the 302 code; used if a replacement
string does not start with “http://”, “https://”, or “$scheme”;

permanent
returns a permanent redirect with the 301 code.

The full redirect URL is formed according to the request scheme ($scheme)
and the server name in redirect and port in redirect directives.

Example:

server {
...
rewrite ^(/download/.*)/media/(.*)\..*$ $1/mp3/$2.mp3 last;
rewrite ^(/download/.*)/audio/(.*)\..*$ $1/mp3/$2.ra last;
return 403;
...

}

But if these directives are put inside the“/download/”location, the last
flag should be replaced by break, or otherwise nginx will make 10 cycles and
return the 500 error:

location /download/ {
rewrite ^(/download/.*)/media/(.*)\..*$ $1/mp3/$2.mp3 break;
rewrite ^(/download/.*)/audio/(.*)\..*$ $1/mp3/$2.ra break;
return 403;

}

If a replacement string includes the new request arguments, the previous
request arguments are appended after them. If this is undesired, putting a
question mark at the end of a replacement string avoids having them appended,
for example:

rewrite ^/users/(.*)$ /show?user=$1? last;

If a regular expression includes the “}” or “;” characters, the whole
expressions should be enclosed in single or double quotes.

Nginx, Inc. p.277 of 563

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP REWRITE MODULE

rewrite log

Syntax: rewrite_log on | off;

Default off

Context: http, server, location, if

Enables or disables logging of ngx_http_rewrite_module module
directives processing results into the error log at the notice level.

set

Syntax: set $variable value;

Default —

Context: server, location, if

Sets a value for the specified variable. The value can contain text, variables,
and their combination.

uninitialized variable warn

Syntax: uninitialized_variable_warn on | off;

Default on

Context: http, server, location, if

Controls whether warnings about uninitialized variables are logged.

2.42.3 Internal Implementation

The ngx_http_rewrite_module module directives are compiled at
the configuration stage into internal instructions that are interpreted during
request processing. An interpreter is a simple virtual stack machine.

For example, the directives

location /download/ {
if ($forbidden) {

return 403;
}

if ($slow) {
limit_rate 10k;

}

rewrite ^/(download/.*)/media/(.*)\..*$ /$1/mp3/$2.mp3 break;
}

will be translated into these instructions:

variable $forbidden
check against zero

return 403
end of code

variable $slow
check against zero
match of regular expression
copy "/"
copy $1

Nginx, Inc. p.278 of 563

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP REWRITE MODULE

copy "/mp3/"
copy $2
copy ".mp3"
end of regular expression
end of code

Note that there are no instructions for the limit rate directive above as
it is unrelated to the ngx_http_rewrite_module module. A separate
configuration is created for the if block. If the condition holds true, a request
is assigned this configuration where limit_rate equals to 10k.

The directive

rewrite ^/(download/.*)/media/(.*)\..*$ /$1/mp3/$2.mp3 break;

can be made smaller by one instruction if the first slash in the regular
expression is put inside the parentheses:

rewrite ^(/download/.*)/media/(.*)\..*$ $1/mp3/$2.mp3 break;

The corresponding instructions will then look like this:

match of regular expression
copy $1
copy "/mp3/"
copy $2
copy ".mp3"
end of regular expression
end of code

Nginx, Inc. p.279 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

2.43 Module ngx http scgi module

2.43.1 Summary . 281
2.43.2 Example Configuration 281
2.43.3 Directives . 281

scgi bind . 281
scgi buffer size . 281
scgi buffering . 282
scgi buffers . 282
scgi busy buffers size . 282
scgi cache . 283
scgi cache background update 283
scgi cache bypass . 283
scgi cache key . 283
scgi cache lock . 283
scgi cache lock age . 284
scgi cache lock timeout 284
scgi cache max range offset 284
scgi cache methods . 284
scgi cache min uses . 285
scgi cache path . 285
scgi cache purge . 287
scgi cache revalidate . 287
scgi cache use stale . 287
scgi cache valid . 288
scgi connect timeout . 289
scgi force ranges . 289
scgi hide header . 289
scgi ignore client abort 290
scgi ignore headers . 290
scgi intercept errors . 290
scgi limit rate . 290
scgi max temp file size 291
scgi next upstream . 291
scgi next upstream timeout 292
scgi next upstream tries 292
scgi no cache . 293
scgi param . 293
scgi pass . 293
scgi pass header . 294
scgi pass request body 294
scgi pass request headers 294
scgi read timeout . 294
scgi request buffering . 295
scgi send timeout . 295
scgi socket keepalive . 295

Nginx, Inc. p.280 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

scgi store . 295
scgi store access . 296
scgi temp file write size 296
scgi temp path . 297

2.43.1 Summary

The ngx_http_scgi_module module allows passing requests to an
SCGI server.

2.43.2 Example Configuration

location / {
include scgi_params;
scgi_pass localhost:9000;

}

2.43.3 Directives

scgi bind

Syntax: scgi_bind address [transparent] | off;

Default —

Context: http, server, location

Makes outgoing connections to an SCGI server originate from the specified
local IP address with an optional port (1.11.2). Parameter value can contain
variables (1.3.12). The special value off (1.3.12) cancels the effect of the
scgi_bind directive inherited from the previous configuration level, which
allows the system to auto-assign the local IP address and port.

The transparent parameter (1.11.0) allows outgoing connections to an
SCGI server originate from a non-local IP address, for example, from a real IP
address of a client:

scgi_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run nginx
worker processes with the superuser privileges. On Linux it is not required
(1.13.8) as if the transparent parameter is specified, worker processes
inherit the CAP_NET_RAW capability from the master process. It is also
necessary to configure kernel routing table to intercept network traffic from
the SCGI server.

scgi buffer size

Syntax: scgi_buffer_size size;

Default 4k|8k

Context: http, server, location

Nginx, Inc. p.281 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

Sets the size of the buffer used for reading the first part of the response
received from the SCGI server. This part usually contains a small response
header. By default, the buffer size is equal to one memory page. This is either
4K or 8K, depending on a platform. It can be made smaller, however.

scgi buffering

Syntax: scgi_buffering on | off;

Default on

Context: http, server, location

Enables or disables buffering of responses from the SCGI server.
When buffering is enabled, nginx receives a response from the SCGI server

as soon as possible, saving it into the buffers set by the scgi buffer size and
scgi buffers directives. If the whole response does not fit into memory, a part
of it can be saved to a temporary file on the disk. Writing to temporary
files is controlled by the scgi max temp file size and scgi temp file write size
directives.

When buffering is disabled, the response is passed to a client synchronously,
immediately as it is received. nginx will not try to read the whole response
from the SCGI server. The maximum size of the data that nginx can receive
from the server at a time is set by the scgi buffer size directive.

Buffering can also be enabled or disabled by passing “yes” or “no” in the
X-Accel-Buffering response header field. This capability can be disabled
using the scgi ignore headers directive.

scgi buffers

Syntax: scgi_buffers number size;

Default 8 4k|8k

Context: http, server, location

Sets the number and size of the buffers used for reading a response from
the SCGI server, for a single connection. By default, the buffer size is equal to
one memory page. This is either 4K or 8K, depending on a platform.

scgi busy buffers size

Syntax: scgi_busy_buffers_size size;

Default 8k|16k

Context: http, server, location

When buffering of responses from the SCGI server is enabled, limits the
total size of buffers that can be busy sending a response to the client while the
response is not yet fully read. In the meantime, the rest of the buffers can be
used for reading the response and, if needed, buffering part of the response to
a temporary file. By default, size is limited by the size of two buffers set by
the scgi buffer size and scgi buffers directives.

Nginx, Inc. p.282 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

scgi cache

Syntax: scgi_cache zone | off;

Default off

Context: http, server, location

Defines a shared memory zone used for caching. The same zone can be
used in several places. Parameter value can contain variables (1.7.9). The off
parameter disables caching inherited from the previous configuration level.

scgi cache background update

Syntax: scgi_cache_background_update on | off;

Default off

Context: http, server, location
This directive appeared in version 1.11.10.

Allows starting a background subrequest to update an expired cache item,
while a stale cached response is returned to the client. Note that it is necessary
to allow the usage of a stale cached response when it is being updated.

scgi cache bypass

Syntax: scgi_cache_bypass string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be taken from a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be taken from the cache:

scgi_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
scgi_cache_bypass $http_pragma $http_authorization;

Can be used along with the scgi no cache directive.

scgi cache key

Syntax: scgi_cache_key string;

Default —

Context: http, server, location

Defines a key for caching, for example

scgi_cache_key localhost:9000$request_uri;

scgi cache lock

Syntax: scgi_cache_lock on | off;

Default off

Context: http, server, location

Nginx, Inc. p.283 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

This directive appeared in version 1.1.12.

When enabled, only one request at a time will be allowed to populate a new
cache element identified according to the scgi cache key directive by passing a
request to an SCGI server. Other requests of the same cache element will either
wait for a response to appear in the cache or the cache lock for this element
to be released, up to the time set by the scgi cache lock timeout directive.

scgi cache lock age

Syntax: scgi_cache_lock_age time;

Default 5s

Context: http, server, location
This directive appeared in version 1.7.8.

If the last request passed to the SCGI server for populating a new cache
element has not completed for the specified time, one more request may be
passed to the SCGI server.

scgi cache lock timeout

Syntax: scgi_cache_lock_timeout time;

Default 5s

Context: http, server, location
This directive appeared in version 1.1.12.

Sets a timeout for scgi cache lock. When the time expires, the request will
be passed to the SCGI server, however, the response will not be cached.

Before 1.7.8, the response could be cached.

scgi cache max range offset

Syntax: scgi_cache_max_range_offset number;

Default —

Context: http, server, location
This directive appeared in version 1.11.6.

Sets an offset in bytes for byte-range requests. If the range is beyond the
offset, the range request will be passed to the SCGI server and the response
will not be cached.

scgi cache methods

Syntax: scgi_cache_methods GET | HEAD | POST . . . ;

Default GET HEAD

Context: http, server, location

If the client request method is listed in this directive then the response will
be cached. “GET” and “HEAD” methods are always added to the list, though it
is recommended to specify them explicitly. See also the scgi no cache directive.

Nginx, Inc. p.284 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

scgi cache min uses

Syntax: scgi_cache_min_uses number;

Default 1

Context: http, server, location

Sets the number of requests after which the response will be cached.

scgi cache path

Syntax: scgi_cache_path path [levels=levels] [use_temp_path=on|off]

keys_zone=name:size [inactive=time] [max_size=size]

[min_free=size] [manager_files=number] [manager_sleep=time]

[manager_threshold=time] [loader_files=number]

[loader_sleep=time] [loader_threshold=time]

[purger=on|off] [purger_files=number] [purger_sleep=time]

[purger_threshold=time];

Default —

Context: http

Sets the path and other parameters of a cache. Cache data are stored in
files. The file name in a cache is a result of applying the MD5 function to
the cache key. The levels parameter defines hierarchy levels of a cache:
from 1 to 3, each level accepts values 1 or 2. For example, in the following
configuration

scgi_cache_path /data/nginx/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/nginx/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file is
renamed. Starting from version 0.8.9, temporary files and the cache can be put
on different file systems. However, be aware that in this case a file is copied
across two file systems instead of the cheap renaming operation. It is thus
recommended that for any given location both cache and a directory holding
temporary files are put on the same file system. A directory for temporary files
is set based on the use_temp_path parameter (1.7.10). If this parameter is
omitted or set to the value on, the directory set by the scgi temp path directive
for the given location will be used. If the value is set to off, temporary files
will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a
shared memory zone, whose name and size are configured by the keys_zone
parameter. One megabyte zone can store about 8 thousand keys.

As part of commercial subscription, the shared memory zone also stores
extended cache information, thus, it is required to specify a larger zone size

Nginx, Inc. p.285 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

for the same number of keys. For example, one megabyte zone can store
about 4 thousand keys.

Cached data that are not accessed during the time specified by the
inactive parameter get removed from the cache regardless of their freshness.
By default, inactive is set to 10 minutes.

The special “cache manager” process monitors the maximum cache size set
by the max_size parameter, and the minimum amount of free space set by the
min_free (1.19.1) parameter on the file system with cache. When the size
is exceeded or there is not enough free space, it removes the least recently
used data. The data is removed in iterations configured by manager_-
files, manager_threshold, and manager_sleep parameters (1.11.5).
During one iteration no more than manager_files items are deleted (by
default, 100). The duration of one iteration is limited by the manager_-
threshold parameter (by default, 200 milliseconds). Between iterations,
a pause configured by the manager_sleep parameter (by default, 50
milliseconds) is made.

A minute after the start the special “cache loader” process is activated. It
loads information about previously cached data stored on file system into a
cache zone. The loading is also done in iterations. During one iteration no
more than loader_files items are loaded (by default, 100). Besides, the
duration of one iteration is limited by the loader_threshold parameter
(by default, 200 milliseconds). Between iterations, a pause configured by the
loader_sleep parameter (by default, 50 milliseconds) is made.

Additionally, the following parameters are available as part of our
commercial subscription:

purger=on|off
Instructs whether cache entries that match a wildcard key will be
removed from the disk by the cache purger (1.7.12). Setting the
parameter to on (default is off) will activate the “cache purger” process
that permanently iterates through all cache entries and deletes the entries
that match the wildcard key.

purger_files=number
Sets the number of items that will be scanned during one iteration
(1.7.12). By default, purger_files is set to 10.

purger_threshold=number
Sets the duration of one iteration (1.7.12). By default, purger_-
threshold is set to 50 milliseconds.

purger_sleep=number
Sets a pause between iterations (1.7.12). By default, purger_sleep is
set to 50 milliseconds.

In versions 1.7.3, 1.7.7, and 1.11.10 cache header format has been changed.
Previously cached responses will be considered invalid after upgrading to a
newer nginx version.

Nginx, Inc. p.286 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

scgi cache purge

Syntax: scgi_cache_purgestring . . . ;

Default —

Context: http, server, location
This directive appeared in version 1.5.7.

Defines conditions under which the request will be considered a cache purge
request. If at least one value of the string parameters is not empty and
is not equal to “0” then the cache entry with a corresponding cache key is
removed. The result of successful operation is indicated by returning the 204
No Content response.

If the cache key of a purge request ends with an asterisk (“*”), all cache
entries matching the wildcard key will be removed from the cache. However,
these entries will remain on the disk until they are deleted for either inactivity,
or processed by the cache purger (1.7.12), or a client attempts to access them.

Example configuration:

scgi_cache_path /data/nginx/cache keys_zone=cache_zone:10m;

map $request_method $purge_method {
PURGE 1;
default 0;

}

server {
...
location / {

scgi_pass backend;
scgi_cache cache_zone;
scgi_cache_key $uri;
scgi_cache_purge $purge_method;

}
}

This functionality is available as part of our commercial subscription.

scgi cache revalidate

Syntax: scgi_cache_revalidate on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.7.

Enables revalidation of expired cache items using conditional requests with
the If-Modified-Since and If-None-Match header fields.

scgi cache use stale

Syntax: scgi_cache_use_stale error | timeout | invalid_header |
updating | http_500 | http_503 | http_403 | http_404 |
http_429 | off . . . ;

Default off

Context: http, server, location

Nginx, Inc. p.287 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

Determines in which cases a stale cached response can be used when an
error occurs during communication with the SCGI server. The directive’s
parameters match the parameters of the scgi next upstream directive.

The error parameter also permits using a stale cached response if an
SCGI server to process a request cannot be selected.

Additionally, the updating parameter permits using a stale cached
response if it is currently being updated. This allows minimizing the number
of accesses to SCGI servers when updating cached data.

Using a stale cached response can also be enabled directly in the response
header for a specified number of seconds after the response became stale
(1.11.10). This has lower priority than using the directive parameters.

• The “stale-while-revalidate” extension of the Cache-Control header
field permits using a stale cached response if it is currently being updated.

• The “stale-if-error” extension of the Cache-Control header field
permits using a stale cached response in case of an error.

To minimize the number of accesses to SCGI servers when populating a
new cache element, the scgi cache lock directive can be used.

scgi cache valid

Syntax: scgi_cache_valid [code . . .] time;

Default —

Context: http, server, location

Sets caching time for different response codes. For example, the following
directives

scgi_cache_valid 200 302 10m;
scgi_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute
for responses with code 404.

If only caching time is specified

scgi_cache_valid 5m;

then only 200, 301, and 302 responses are cached.
In addition, the any parameter can be specified to cache any responses:

scgi_cache_valid 200 302 10m;
scgi_cache_valid 301 1h;
scgi_cache_valid any 1m;

Parameters of caching can also be set directly in the response header. This
has higher priority than setting of caching time using the directive.

Nginx, Inc. p.288 of 563

https://datatracker.ietf.org/doc/html/rfc5861#section-3
https://datatracker.ietf.org/doc/html/rfc5861#section-4

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

• The X-Accel-Expires header field sets caching time of a response in
seconds. The zero value disables caching for a response. If the value
starts with the @ prefix, it sets an absolute time in seconds since Epoch,
up to which the response may be cached.

• If the header does not include the X-Accel-Expires field, parameters
of caching may be set in the header fields Expires or Cache-Control.

• If the header includes the Set-Cookie field, such a response will not
be cached.

• If the header includes the Vary field with the special value “*”, such a
response will not be cached (1.7.7). If the header includes the Vary field
with another value, such a response will be cached taking into account
the corresponding request header fields (1.7.7).

Processing of one or more of these response header fields can be disabled using
the scgi ignore headers directive.

scgi connect timeout

Syntax: scgi_connect_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for establishing a connection with an SCGI server. It
should be noted that this timeout cannot usually exceed 75 seconds.

scgi force ranges

Syntax: scgi_force_ranges on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.7.

Enables byte-range support for both cached and uncached responses from
the SCGI server regardless of the Accept-Ranges field in these responses.

scgi hide header

Syntax: scgi_hide_header field;

Default —

Context: http, server, location

By default, nginx does not pass the header fields Status and
X-Accel-... from the response of an SCGI server to a client. The scgi_-
hide_header directive sets additional fields that will not be passed. If, on
the contrary, the passing of fields needs to be permitted, the scgi pass header
directive can be used.

Nginx, Inc. p.289 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

scgi ignore client abort

Syntax: scgi_ignore_client_abort on | off;

Default off

Context: http, server, location

Determines whether the connection with an SCGI server should be closed
when a client closes the connection without waiting for a response.

scgi ignore headers

Syntax: scgi_ignore_headers field . . . ;

Default —

Context: http, server, location

Disables processing of certain response header fields from
the SCGI server. The following fields can be ignored:
X-Accel-Redirect, X-Accel-Expires, X-Accel-Limit-Rate
(1.1.6), X-Accel-Buffering (1.1.6), X-Accel-Charset (1.1.6),
Expires, Cache-Control, Set-Cookie (0.8.44), and Vary (1.7.7).

If not disabled, processing of these header fields has the following effect:

• X-Accel-Expires, Expires, Cache-Control, Set-Cookie, and
Vary set the parameters of response caching;

• X-Accel-Redirect performs an internal redirect to the specified URI;

• X-Accel-Limit-Rate sets the rate limit for transmission of a
response to a client;

• X-Accel-Buffering enables or disables buffering of a response;

• X-Accel-Charset sets the desired charset of a response.

scgi intercept errors

Syntax: scgi_intercept_errors on | off;

Default off

Context: http, server, location

Determines whether an SCGI server responses with codes greater than or
equal to 300 should be passed to a client or be intercepted and redirected to
nginx for processing with the error page directive.

scgi limit rate

Syntax: scgi_limit_rate rate;

Default 0

Context: http, server, location
This directive appeared in version 1.7.7.

Nginx, Inc. p.290 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

Limits the speed of reading the response from the SCGI server. The rate is
specified in bytes per second. The zero value disables rate limiting. The limit
is set per a request, and so if nginx simultaneously opens two connections to
the SCGI server, the overall rate will be twice as much as the specified limit.
The limitation works only if buffering of responses from the SCGI server is
enabled. Parameter value can contain variables (1.27.0).

scgi max temp file size

Syntax: scgi_max_temp_file_size size;

Default 1024m

Context: http, server, location

When buffering of responses from the SCGI server is enabled, and the
whole response does not fit into the buffers set by the scgi buffer size and
scgi buffers directives, a part of the response can be saved to a temporary file.
This directive sets the maximum size of the temporary file. The size of data
written to the temporary file at a time is set by the scgi temp file write size
directive.

The zero value disables buffering of responses to temporary files.

This restriction does not apply to responses that will be cached or stored
on disk.

scgi next upstream

Syntax: scgi_next_upstream error | timeout | invalid_header |
http_500 | http_503 | http_403 | http_404 | http_429 |
non_idempotent | off . . . ;

Default error timeout

Context: http, server, location

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_header
a server returned an empty or invalid response;

http_500
a server returned a response with the code 500;

http_503
a server returned a response with the code 503;

http_403
a server returned a response with the code 403;

Nginx, Inc. p.291 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

http_404
a server returned a response with the code 404;

http_429
a server returned a response with the code 429 (1.11.13);

non_idempotent
normally, requests with a non-idempotent method (POST, LOCK, PATCH)
are not passed to the next server if a request has been sent to an
upstream server (1.9.13); enabling this option explicitly allows retrying
such requests;

off
disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of
communication with a server. The cases of error, timeout and invalid_-
header are always considered unsuccessful attempts, even if they are not
specified in the directive. The cases of http_500, http_503, and http_-
429 are considered unsuccessful attempts only if they are specified in the
directive. The cases of http_403 and http_404 are never considered
unsuccessful attempts.

Passing a request to the next server can be limited by the number of tries
and by time.

scgi next upstream timeout

Syntax: scgi_next_upstream_timeout time;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

scgi next upstream tries

Syntax: scgi_next_upstream_tries number;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

Nginx, Inc. p.292 of 563

https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.2

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

scgi no cache

Syntax: scgi_no_cache string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be saved to a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be saved:

scgi_no_cache $cookie_nocache $arg_nocache$arg_comment;
scgi_no_cache $http_pragma $http_authorization;

Can be used along with the scgi cache bypass directive.

scgi param

Syntax: scgi_param parameter value [if_not_empty];

Default —

Context: http, server, location

Sets a parameter that should be passed to the SCGI server. The value can
contain text, variables, and their combination. These directives are inherited
from the previous configuration level if and only if there are no scgi_param
directives defined on the current level.

Standard CGI environment variables should be provided as SCGI headers,
see the scgi_params file provided in the distribution:

location / {
include scgi_params;
...

}

If the directive is specified with if_not_empty (1.1.11) then such a
parameter will be passed to the server only if its value is not empty:

scgi_param HTTPS $https if_not_empty;

scgi pass

Syntax: scgi_pass address;

Default —

Context: location, if in location

Sets the address of an SCGI server. The address can be specified as a
domain name or IP address, and a port:

scgi_pass localhost:9000;

or as a UNIX-domain socket path:

Nginx, Inc. p.293 of 563

https://datatracker.ietf.org/doc/html/rfc3875#section-4.1

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

scgi_pass unix:/tmp/scgi.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

Parameter value can contain variables. In this case, if an address is specified
as a domain name, the name is searched among the described server groups,
and, if not found, is determined using a resolver.

scgi pass header

Syntax: scgi_pass_header field;

Default —

Context: http, server, location

Permits passing otherwise disabled header fields from an SCGI server to a
client.

scgi pass request body

Syntax: scgi_pass_request_body on | off;

Default on

Context: http, server, location

Indicates whether the original request body is passed to the SCGI server.
See also the scgi pass request headers directive.

scgi pass request headers

Syntax: scgi_pass_request_headers on | off;

Default on

Context: http, server, location

Indicates whether the header fields of the original request are passed to the
SCGI server. See also the scgi pass request body directive.

scgi read timeout

Syntax: scgi_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the SCGI server. The timeout
is set only between two successive read operations, not for the transmission of
the whole response. If the SCGI server does not transmit anything within this
time, the connection is closed.

Nginx, Inc. p.294 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

scgi request buffering

Syntax: scgi_request_buffering on | off;

Default on

Context: http, server, location
This directive appeared in version 1.7.11.

Enables or disables buffering of a client request body.
When buffering is enabled, the entire request body is read from the client

before sending the request to an SCGI server.
When buffering is disabled, the request body is sent to the SCGI server

immediately as it is received. In this case, the request cannot be passed to the
next server if nginx already started sending the request body.

When HTTP/1.1 chunked transfer encoding is used to send the original
request body, the request body will be buffered regardless of the directive
value.

scgi send timeout

Syntax: scgi_send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a request to the SCGI server. The timeout
is set only between two successive write operations, not for the transmission
of the whole request. If the SCGI server does not receive anything within this
time, the connection is closed.

scgi socket keepalive

Syntax: scgi_socket_keepalive on | off;

Default off

Context: http, server, location
This directive appeared in version 1.15.6.

Configures the “TCP keepalive” behavior for outgoing connections to an
SCGI server. By default, the operating system’s settings are in effect for the
socket. If the directive is set to the value “on”, the SO_KEEPALIVE socket
option is turned on for the socket.

scgi store

Syntax: scgi_store on | off | string;

Default off

Context: http, server, location

Enables saving of files to a disk. The on parameter saves files with paths
corresponding to the directives alias or root. The off parameter disables
saving of files. In addition, the file name can be set explicitly using the string
with variables:

Nginx, Inc. p.295 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

scgi_store /data/www$original_uri;

The modification time of files is set according to the received
Last-Modified response header field. The response is first written to a
temporary file, and then the file is renamed. Starting from version 0.8.9,
temporary files and the persistent store can be put on different file systems.
However, be aware that in this case a file is copied across two file systems
instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by
the scgi temp path directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files,
e.g.:

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

scgi_pass backend:9000;
...

scgi_store on;
scgi_store_access user:rw group:rw all:r;
scgi_temp_path /data/temp;

alias /data/www/;
}

scgi store access

Syntax: scgi_store_access users:permissions . . . ;

Default user:rw

Context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

scgi_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user
permissions may be omitted:

scgi_store_access group:rw all:r;

scgi temp file write size

Syntax: scgi_temp_file_write_size size;

Default 8k|16k

Context: http, server, location

Nginx, Inc. p.296 of 563

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP SCGI MODULE

Limits the size of data written to a temporary file at a time, when buffering
of responses from the SCGI server to temporary files is enabled. By default, size
is limited by two buffers set by the scgi buffer size and scgi buffers directives.
The maximum size of a temporary file is set by the scgi max temp file size
directive.

scgi temp path

Syntax: scgi_temp_path path [level1 [level2 [level3]]];

Default scgi_temp

Context: http, server, location

Defines a directory for storing temporary files with data received from SCGI
servers. Up to three-level subdirectory hierarchy can be used underneath the
specified directory. For example, in the following configuration

scgi_temp_path /spool/nginx/scgi_temp 1 2;

a temporary file might look like this:

/spool/nginx/scgi_temp/7/45/00000123457

See also the use_temp_path parameter of the scgi cache path directive.

Nginx, Inc. p.297 of 563

CHAPTER 2. HTTP SERVER MODULES 2.44. MODULE NGX HTTP SECURE LINK MODULE

2.44 Module ngx http secure link module

2.44.1 Summary . 298
2.44.2 Directives . 298

secure link . 298
secure link md5 . 299
secure link secret . 299

2.44.3 Embedded Variables . 300

2.44.1 Summary

The ngx_http_secure_link_module module (0.7.18) is used to check
authenticity of requested links, protect resources from unauthorized access, and
limit link lifetime.

The authenticity of a requested link is verified by comparing the checksum
value passed in a request with the value computed for the request. If a link has
a limited lifetime and the time has expired, the link is considered outdated.
The status of these checks is made available in the $secure link variable.

The module provides two alternative operation modes. The first mode is
enabled by the secure link secret directive and is used to check authenticity
of requested links as well as protect resources from unauthorized access.
The second mode (0.8.50) is enabled by the secure link and secure link md5
directives and is also used to limit lifetime of links.

This module is not built by default, it should be enabled with the
--with-http_secure_link_module configuration parameter.

2.44.2 Directives

secure link

Syntax: secure_link expression;

Default —

Context: http, server, location

Defines a string with variables from which the checksum value and lifetime
of a link will be extracted.

Variables used in an expression are usually associated with a request; see
example below.

The checksum value extracted from the string is compared with the MD5
hash value of the expression defined by the secure link md5 directive. If the
checksums are different, the $secure link variable is set to an empty string.
If the checksums are the same, the link lifetime is checked. If the link has a
limited lifetime and the time has expired, the $secure link variable is set to
“0”. Otherwise, it is set to “1”. The MD5 hash value passed in a request is
encoded in base64url.

If a link has a limited lifetime, the expiration time is set in seconds
since Epoch (Thu, 01 Jan 1970 00:00:00 GMT). The value is specified in the
expression after the MD5 hash, and is separated by a comma. The expiration

Nginx, Inc. p.298 of 563

https://datatracker.ietf.org/doc/html/rfc4648#section-5

CHAPTER 2. HTTP SERVER MODULES 2.44. MODULE NGX HTTP SECURE LINK MODULE

time passed in a request is available through the $secure link expires variable
for a use in the secure link md5 directive. If the expiration time is not specified,
a link has the unlimited lifetime.

secure link md5

Syntax: secure_link_md5 expression;

Default —

Context: http, server, location

Defines an expression for which the MD5 hash value will be computed and
compared with the value passed in a request.

The expression should contain the secured part of a link (resource) and a
secret ingredient. If the link has a limited lifetime, the expression should also
contain $secure link expires.

To prevent unauthorized access, the expression may contain some
information about the client, such as its address and browser version.

Example:

location /s/ {
secure_link $arg_md5,$arg_expires;
secure_link_md5 "$secure_link_expires$uri$remote_addr secret";

if ($secure_link = "") {
return 403;

}

if ($secure_link = "0") {
return 410;

}

...
}

The“/s/link?md5=_e4Nc3iduzkWRm01TBBNYw&expires=2147483647”
link restricts access to “/s/link” for the client with the IP address 127.0.0.1.
The link also has the limited lifetime until January 19, 2038 (GMT).

On UNIX, the md5 request argument value can be obtained as:

echo -n ’2147483647/s/link127.0.0.1 secret’ | \
openssl md5 -binary | openssl base64 | tr +/ -_ | tr -d =

secure link secret

Syntax: secure_link_secret word;

Default —

Context: location

Defines a secret word used to check authenticity of requested links.
The full URI of a requested link looks as follows:

/prefix/hash/link

Nginx, Inc. p.299 of 563

CHAPTER 2. HTTP SERVER MODULES 2.44. MODULE NGX HTTP SECURE LINK MODULE

where hash is a hexadecimal representation of the MD5 hash computed for
the concatenation of the link and secret word, and prefix is an arbitrary string
without slashes.

If the requested link passes the authenticity check, the $secure link variable
is set to the link extracted from the request URI. Otherwise, the $secure link
variable is set to an empty string.

Example:

location /p/ {
secure_link_secret secret;

if ($secure_link = "") {
return 403;

}

rewrite ^ /secure/$secure_link;
}

location /secure/ {
internal;

}

A request of“/p/5e814704a28d9bc1914ff19fa0c4a00a/link”will
be internally redirected to “/secure/link”.

On UNIX, the hash value for this example can be obtained as:

echo -n ’linksecret’ | openssl md5 -hex

2.44.3 Embedded Variables

$secure link
The status of a link check. The specific value depends on the selected
operation mode.

$secure link expires
The lifetime of a link passed in a request; intended to be used only in
the secure link md5 directive.

Nginx, Inc. p.300 of 563

CHAPTER 2. HTTP SERVER MODULES 2.45. MODULE NGX HTTP SESSION LOG MODULE

2.45 Module ngx http session log module

2.45.1 Summary . 301
2.45.2 Example Configuration 301
2.45.3 Directives . 301

session log . 301
session log format . 301
session log zone . 302

2.45.4 Embedded Variables . 302

2.45.1 Summary

The ngx_http_session_log_module module enables logging sessions
(that is, aggregates of multiple HTTP requests) instead of individual HTTP
requests.

This module is available as part of our commercial subscription.

2.45.2 Example Configuration

The following configuration sets up a session log and maps requests to
sessions according to the request client address and User-Agent request
header field:

session_log_zone /path/to/log format=combined
zone=one:1m timeout=30s
md5=$binary_remote_addr$http_user_agent;

location /media/ {
session_log one;

}

2.45.3 Directives

session log

Syntax: session_log name | off;

Default off

Context: http, server, location

Enables the use of the specified session log. The special value off
cancels the effect of the session_log directives inherited from the previous
configuration level.

session log format

Syntax: session_log_format name string . . . ;

Default combined "..."

Context: http

Nginx, Inc. p.301 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.45. MODULE NGX HTTP SESSION LOG MODULE

Specifies the output format of a log. The value of the $body bytes sent
variable is aggregated across all requests in a session. The values of all other
variables available for logging correspond to the first request in a session.

session log zone

Syntax: session_log_zone path zone=name:size [format=format]

[timeout=time] [id=id] [md5=md5] ;

Default —

Context: http

Sets the path to a log file and configures the shared memory zone that is
used to store currently active sessions.

A session is considered active for as long as the time elapsed since the last
request in the session does not exceed the specified timeout (by default, 30
seconds). Once a session is no longer active, it is written to the log.

The id parameter identifies the session to which a request is mapped. The
id parameter is set to the hexadecimal representation of an MD5 hash (for
example, obtained from a cookie using variables). If this parameter is not
specified or does not represent the valid MD5 hash, nginx computes the MD5
hash from the value of the md5 parameter and creates a new session using this
hash. Both the id and md5 parameters can contain variables.

The format parameter sets the custom session log format configured by
the session log format directive. If format is not specified, the predefined
“combined” format is used.

2.45.4 Embedded Variables

The ngx_http_session_log_module module supports two embedded
variables:

$session log id
current session ID;

$session log binary id
current session ID in binary form (16 bytes).

Nginx, Inc. p.302 of 563

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP SLICE MODULE

2.46 Module ngx http slice module

2.46.1 Summary . 303
2.46.2 Known Issues . 303
2.46.3 Example Configuration 303
2.46.4 Directives . 303

slice . 303
2.46.5 Embedded Variables . 304

2.46.1 Summary

The ngx_http_slice_module module (1.9.8) is a filter that splits a
request into subrequests, each returning a certain range of response. The filter
provides more effective caching of big responses.

This module is not built by default, it should be enabled with the
--with-http_slice_module configuration parameter.

2.46.2 Known Issues

Currently, the module does not work as expected in subrequests such as
background cache update. In this case, a request is constructed without byte-
range support.

2.46.3 Example Configuration

location / {
slice 1m;
proxy_cache cache;
proxy_cache_key uriis_args$args$slice_range;
proxy_set_header Range $slice_range;
proxy_cache_valid 200 206 1h;
proxy_pass http://localhost:8000;

}

In this example, the response is split into 1-megabyte cacheable slices.

2.46.4 Directives

slice

Syntax: slice size;

Default 0

Context: http, server, location

Sets the size of the slice. The zero value disables splitting responses into
slices. Note that a too low value may result in excessive memory usage and
opening a large number of files.

In order for a subrequest to return the required range, the $slice range
variable should be passed to the proxied server as the Range request header

Nginx, Inc. p.303 of 563

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP SLICE MODULE

field. If caching is enabled, $slice range should be added to the cache key and
caching of responses with 206 status code should be enabled.

2.46.5 Embedded Variables

The ngx_http_slice_module module supports the following embed-
ded variables:

$slice range
the current slice range in HTTP byte range format, for example,
bytes=0-1048575.

Nginx, Inc. p.304 of 563

https://datatracker.ietf.org/doc/html/rfc7233#section-2.1

CHAPTER 2. HTTP SERVER MODULES 2.47. MODULE NGX HTTP SPLIT CLIENTS MODULE

2.47 Module ngx http split clients module

2.47.1 Summary . 305
2.47.2 Example Configuration 305
2.47.3 Directives . 305

split clients . 305

2.47.1 Summary

The ngx_http_split_clients_module module creates variables
suitable for A/B testing, also known as split testing.

2.47.2 Example Configuration

http {
split_clients "${remote_addr}AAA" $variant {

0.5% .one;
2.0% .two;

* "";
}

server {
location / {

index index${variant}.html;

2.47.3 Directives

split clients

Syntax: split_clients string $variable { . . . }
Default —

Context: http

Creates a variable for A/B testing, for example:

split_clients "${remote_addr}AAA" $variant {
0.5% .one;
2.0% .two;

* "";
}

The value of the original string is hashed using MurmurHash2. In the
example given, hash values from 0 to 21474835 (0.5%) correspond to the value
".one" of the $variant variable, hash values from 21474836 to 107374180
(2%) correspond to the value ".two", and hash values from 107374181 to
4294967295 correspond to the value "" (an empty string).

Nginx, Inc. p.305 of 563

CHAPTER 2. HTTP SERVER MODULES 2.48. MODULE NGX HTTP SSI MODULE

2.48 Module ngx http ssi module

2.48.1 Summary . 306
2.48.2 Example Configuration 306
2.48.3 Directives . 306

ssi . 306
ssi last modified . 306
ssi min file chunk . 307
ssi silent errors . 307
ssi types . 307
ssi value length . 307

2.48.4 SSI Commands . 307
2.48.5 Embedded Variables . 311

2.48.1 Summary

The ngx_http_ssi_module module is a filter that processes SSI (Server
Side Includes) commands in responses passing through it. Currently, the list
of supported SSI commands is incomplete.

2.48.2 Example Configuration

location / {
ssi on;
...

}

2.48.3 Directives

ssi

Syntax: ssi on | off;

Default off

Context: http, server, location, if in location

Enables or disables processing of SSI commands in responses.

ssi last modified

Syntax: ssi_last_modified on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.1.

Allows preserving the Last-Modified header field from the original
response during SSI processing to facilitate response caching.

By default, the header field is removed as contents of the response are
modified during processing and may contain dynamically generated elements
or parts that are changed independently of the original response.

Nginx, Inc. p.306 of 563

CHAPTER 2. HTTP SERVER MODULES 2.48. MODULE NGX HTTP SSI MODULE

ssi min file chunk

Syntax: ssi_min_file_chunk size;

Default 1k

Context: http, server, location

Sets the minimum size for parts of a response stored on disk, starting from
which it makes sense to send them using sendfile.

ssi silent errors

Syntax: ssi_silent_errors on | off;

Default off

Context: http, server, location

If enabled, suppresses the output of the “[an error occurred while
processing the directive]” string if an error occurred during SSI
processing.

ssi types

Syntax: ssi_types mime-type . . . ;

Default text/html

Context: http, server, location

Enables processing of SSI commands in responses with the specified MIME
types in addition to “text/html”. The special value “*” matches any MIME
type (0.8.29).

ssi value length

Syntax: ssi_value_length length;

Default 256

Context: http, server, location

Sets the maximum length of parameter values in SSI commands.

2.48.4 SSI Commands

SSI commands have the following generic format:

<!--# command parameter1=value1 parameter2=value2 ... -->

The following commands are supported:

block
Defines a block that can be used as a stub in the include command.
The block can contain other SSI commands. The command has the
following parameter:

name
block name.

Nginx, Inc. p.307 of 563

CHAPTER 2. HTTP SERVER MODULES 2.48. MODULE NGX HTTP SSI MODULE

Example:

<!--# block name="one" -->
stub
<!--# endblock -->

config
Sets some parameters used during SSI processing, namely:

errmsg
a string that is output if an error occurs during SSI processing. By
default, the following string is output:

[an error occurred while processing the directive]

timefmt
a format string passed to the strftime function used to output
date and time. By default, the following format is used:

"%A, %d-%b-%Y %H:%M:%S %Z"

The “%s” format is suitable to output time in seconds.

echo
Outputs the value of a variable. The command has the following
parameters:

var
the variable name.

encoding
the encoding method. Possible values include none, url, and
entity. By default, entity is used.

default
a non-standard parameter that sets a string to be output if a variable
is undefined. By default, “(none)” is output. The command

<!--# echo var="name" default="no" -->

replaces the following sequence of commands:

<!--# if expr="$name" --><!--# echo var="name" --><!--#
else -->no<!--# endif -->

if
Performs a conditional inclusion. The following commands are
supported:

<!--# if expr="..." -->
...
<!--# elif expr="..." -->
...

Nginx, Inc. p.308 of 563

CHAPTER 2. HTTP SERVER MODULES 2.48. MODULE NGX HTTP SSI MODULE

<!--# else -->
...
<!--# endif -->

Only one level of nesting is currently supported. The command has the
following parameter:

expr
expression. An expression can be:

• variable existence check:

<!--# if expr="$name" -->

• comparison of a variable with a text:

<!--# if expr="$name = text" -->
<!--# if expr="$name != text" -->

• comparison of a variable with a regular expression:

<!--# if expr="$name = /text/" -->
<!--# if expr="$name != /text/" -->

If a text contains variables, their values are substituted. A regular
expression can contain positional and named captures that can later
be used through variables, for example:

<!--# if expr="$name = /(.+)@(?P<domain>.+)/" -->
<!--# echo var="1" -->
<!--# echo var="domain" -->

<!--# endif -->

include
Includes the result of another request into a response. The command has
the following parameters:

file
specifies an included file, for example:

<!--# include file="footer.html" -->

virtual
specifies an included request, for example:

<!--# include virtual="/remote/body.php?argument=value" -->

Several requests specified on one page and processed by proxied or
FastCGI/uwsgi/SCGI/gRPC servers run in parallel. If sequential
processing is desired, the wait parameter should be used.

Nginx, Inc. p.309 of 563

CHAPTER 2. HTTP SERVER MODULES 2.48. MODULE NGX HTTP SSI MODULE

stub
a non-standard parameter that names the block whose content will
be output if the included request results in an empty body or if an
error occurs during the request processing, for example:

<!--# block name="one" --> <!--# endblock -->
<!--# include virtual="/remote/body.php?argument=value" stub="one"

-->

The replacement block content is processed in the included request
context.

wait
a non-standard parameter that instructs to wait for a request to
fully complete before continuing with SSI processing, for example:

<!--# include virtual="/remote/body.php?argument=value" wait="yes"
-->

set
a non-standard parameter that instructs to write a successful result
of request processing to the specified variable, for example:

<!--# include virtual="/remote/body.php?argument=value" set="one"
-->

The maximum size of the response is set by the subrequest output -
buffer size directive (1.13.10):

location /remote/ {
subrequest_output_buffer_size 64k;
...

}

Prior to version 1.13.10, only the results of responses obtained
using the ngx http proxy module, ngx http memcached module,
ngx http fastcgi module (1.5.6), ngx http uwsgi module (1.5.6),
and ngx http scgi module (1.5.6) modules could be written into
variables. The maximum size of the response was set with
the proxy buffer size, memcached buffer size, fastcgi buffer size,
uwsgi buffer size, and scgi buffer size directives.

set
Sets a value of a variable. The command has the following parameters:

var
the variable name.

value
the variable value. If an assigned value contains variables, their
values are substituted.

Nginx, Inc. p.310 of 563

CHAPTER 2. HTTP SERVER MODULES 2.48. MODULE NGX HTTP SSI MODULE

2.48.5 Embedded Variables

The ngx_http_ssi_module module supports two embedded variables:

$date local
current time in the local time zone. The format is set by the config
command with the timefmt parameter.

$date gmt
current time in GMT. The format is set by the config command with
the timefmt parameter.

Nginx, Inc. p.311 of 563

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

2.49 Module ngx http ssl module

2.49.1 Summary . 312
2.49.2 Example Configuration 313
2.49.3 Directives . 313

ssl . 313
ssl buffer size . 313
ssl certificate . 314
ssl certificate key . 315
ssl ciphers . 315
ssl client certificate . 315
ssl conf command . 315
ssl crl . 316
ssl dhparam . 316
ssl early data . 316
ssl ecdh curve . 317
ssl ocsp . 317
ssl ocsp cache . 318
ssl ocsp responder . 318
ssl password file . 318
ssl prefer server ciphers 319
ssl protocols . 319
ssl reject handshake . 319
ssl session cache . 320
ssl session ticket key . 320
ssl session tickets . 321
ssl session timeout . 321
ssl stapling . 321
ssl stapling file . 322
ssl stapling responder 322
ssl stapling verify . 322
ssl trusted certificate . 322
ssl verify client . 323
ssl verify depth . 323

2.49.4 Error Processing . 323
2.49.5 Embedded Variables . 323

2.49.1 Summary

The ngx_http_ssl_module module provides the necessary support for
HTTPS.

This module is not built by default, it should be enabled with the
--with-http_ssl_module configuration parameter.

This module requires the OpenSSL library.

Nginx, Inc. p.312 of 563

http://www.openssl.org

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

2.49.2 Example Configuration

To reduce the processor load it is recommended to

• set the number of worker processes equal to the number of processors,

• enable keep-alive connections,

• enable the shared session cache,

• disable the built-in session cache,

• and possibly increase the session lifetime (by default, 5 minutes):

worker_processes auto;

http {

...

server {
listen 443 ssl;
keepalive_timeout 70;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3;
ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5;
ssl_certificate /usr/local/nginx/conf/cert.pem;
ssl_certificate_key /usr/local/nginx/conf/cert.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

...
}

2.49.3 Directives

ssl

Syntax: ssl on | off;

Default off

Context: http, server

This directive was made obsolete in version 1.15.0 and was removed in
version 1.25.1. The ssl parameter of the listen directive should be used
instead.

ssl buffer size

Syntax: ssl_buffer_size size;

Default 16k

Context: http, server
This directive appeared in version 1.5.9.

Sets the size of the buffer used for sending data.
By default, the buffer size is 16k, which corresponds to minimal overhead

when sending big responses. To minimize Time To First Byte it may be
beneficial to use smaller values, for example:

Nginx, Inc. p.313 of 563

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

ssl_buffer_size 4k;

ssl certificate

Syntax: ssl_certificate file;

Default —

Context: http, server

Specifies a file with the certificate in the PEM format for the given virtual
server. If intermediate certificates should be specified in addition to a primary
certificate, they should be specified in the same file in the following order: the
primary certificate comes first, then the intermediate certificates. A secret key
in the PEM format may be placed in the same file.

Since version 1.11.0, this directive can be specified multiple times to load
certificates of different types, for example, RSA and ECDSA:

server {
listen 443 ssl;
server_name example.com;

ssl_certificate example.com.rsa.crt;
ssl_certificate_key example.com.rsa.key;

ssl_certificate example.com.ecdsa.crt;
ssl_certificate_key example.com.ecdsa.key;

...
}

Only OpenSSL 1.0.2 or higher supports separate certificate chains for
different certificates. With older versions, only one certificate chain can be
used.

Since version 1.15.9, variables can be used in the file name when using
OpenSSL 1.0.2 or higher:

ssl_certificate $ssl_server_name.crt;
ssl_certificate_key $ssl_server_name.key;

Note that using variables implies that a certificate will be loaded for each
SSL handshake, and this may have a negative impact on performance.

The value data:$variable can be specified instead of the file (1.15.10),
which loads a certificate from a variable without using intermediate files. Note
that inappropriate use of this syntax may have its security implications, such
as writing secret key data to error log.

It should be kept in mind that due to the HTTPS protocol limitations
for maximum interoperability virtual servers should listen on different IP
addresses.

Nginx, Inc. p.314 of 563

https://nginx.org/en/docs/http/configuring_https_servers.html#chains
https://nginx.org/en/docs/http/configuring_https_servers.html#name_based_https_servers
https://nginx.org/en/docs/http/configuring_https_servers.html#name_based_https_servers

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

ssl certificate key

Syntax: ssl_certificate_key file;

Default —

Context: http, server

Specifies a file with the secret key in the PEM format for the given virtual
server.

The value engine:name:id can be specified instead of the file (1.7.9), which
loads a secret key with a specified id from the OpenSSL engine name.

The value data:$variable can be specified instead of the file (1.15.10),
which loads a secret key from a variable without using intermediate files. Note
that inappropriate use of this syntax may have its security implications, such
as writing secret key data to error log.

Since version 1.15.9, variables can be used in the file name when using
OpenSSL 1.0.2 or higher.

ssl ciphers

Syntax: ssl_ciphers ciphers;

Default HIGH:!aNULL:!MD5

Context: http, server

Specifies the enabled ciphers. The ciphers are specified in the format
understood by the OpenSSL library, for example:

ssl_ciphers ALL:!aNULL:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

The full list can be viewed using the “openssl ciphers” command.

The previous versions of nginx used different ciphers by default.

ssl client certificate

Syntax: ssl_client_certificate file;

Default —

Context: http, server

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates and OCSP responses if ssl stapling is enabled.

The list of certificates will be sent to clients. If this is not desired, the
ssl trusted certificate directive can be used.

ssl conf command

Syntax: ssl_conf_command name value;

Default —

Context: http, server
This directive appeared in version 1.19.4.

Sets arbitrary OpenSSL configuration commands.

Nginx, Inc. p.315 of 563

https://nginx.org/en/docs/http/configuring_https_servers.html#compatibility
https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

The directive is supported when using OpenSSL 1.0.2 or higher.

Several ssl_conf_command directives can be specified on the same level:

ssl_conf_command Options PrioritizeChaCha;
ssl_conf_command Ciphersuites TLS_CHACHA20_POLY1305_SHA256;

These directives are inherited from the previous configuration level if and
only if there are no ssl_conf_command directives defined on the current
level.

Note that configuring OpenSSL directly might result in unexpected
behavior.

ssl crl

Syntax: ssl_crl file;

Default —

Context: http, server
This directive appeared in version 0.8.7.

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify client certificates.

ssl dhparam

Syntax: ssl_dhparam file;

Default —

Context: http, server
This directive appeared in version 0.7.2.

Specifies a file with DH parameters for DHE ciphers.
By default no parameters are set, and therefore DHE ciphers will not be

used.

Prior to version 1.11.0, builtin parameters were used by default.

ssl early data

Syntax: ssl_early_data on | off;

Default off

Context: http, server
This directive appeared in version 1.15.3.

Enables or disables TLS 1.3 early data.

Requests sent within early data are subject to replay attacks. To protect
against such attacks at the application layer, the $ssl early data variable
should be used.

Nginx, Inc. p.316 of 563

https://datatracker.ietf.org/doc/html/rfc8446#section-2.3
https://datatracker.ietf.org/doc/html/rfc8470

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

proxy_set_header Early-Data $ssl_early_data;

The directive is supported when using OpenSSL 1.1.1 or higher (1.15.4)
and BoringSSL.

ssl ecdh curve

Syntax: ssl_ecdh_curve curve;

Default auto

Context: http, server
This directive appeared in versions 1.1.0 and 1.0.6.

Specifies a curve for ECDHE ciphers.
When using OpenSSL 1.0.2 or higher, it is possible to specify multiple

curves (1.11.0), for example:

ssl_ecdh_curve prime256v1:secp384r1;

The special value auto (1.11.0) instructs nginx to use a list built into the
OpenSSL library when using OpenSSL 1.0.2 or higher, or prime256v1 with
older versions.

Prior to version 1.11.0, the prime256v1 curve was used by default.

When using OpenSSL 1.0.2 or higher, this directive sets the list of curves
supported by the server. Thus, in order for ECDSA certificates to work, it is
important to include the curves used in the certificates.

ssl ocsp

Syntax: ssl_ocsp on | off | leaf;

Default off

Context: http, server
This directive appeared in version 1.19.0.

Enables OCSP validation of the client certificate chain. The leaf
parameter enables validation of the client certificate only.

For the OCSP validation to work, the ssl verify client directive should be
set to on or optional.

To resolve the OCSP responder hostname, the resolver directive should also
be specified.

Example:

ssl_verify_client on;
ssl_ocsp on;
resolver 192.0.2.1;

Nginx, Inc. p.317 of 563

https://boringssl.googlesource.com/boringssl/

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

ssl ocsp cache

Syntax: ssl_ocsp_cache off | [shared:name:size];

Default off

Context: http, server
This directive appeared in version 1.19.0.

Sets name and size of the cache that stores client certificates status for
OCSP validation. The cache is shared between all worker processes. A cache
with the same name can be used in several virtual servers.

The off parameter prohibits the use of the cache.

ssl ocsp responder

Syntax: ssl_ocsp_responder url;

Default —

Context: http, server
This directive appeared in version 1.19.0.

Overrides the URL of the OCSP responder specified in the “Authority
Information Access” certificate extension for validation of client certificates.

Only “http://” OCSP responders are supported:

ssl_ocsp_responder http://ocsp.example.com/;

ssl password file

Syntax: ssl_password_file file;

Default —

Context: http, server
This directive appeared in version 1.7.3.

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

Example:

http {
ssl_password_file /etc/keys/global.pass;
...

server {
server_name www1.example.com;
ssl_certificate_key /etc/keys/first.key;

}

server {
server_name www2.example.com;

named pipe can also be used instead of a file
ssl_password_file /etc/keys/fifo;
ssl_certificate_key /etc/keys/second.key;

}
}

Nginx, Inc. p.318 of 563

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

ssl prefer server ciphers

Syntax: ssl_prefer_server_ciphers on | off;

Default off

Context: http, server

Specifies that server ciphers should be preferred over client ciphers when
using the SSLv3 and TLS protocols.

ssl protocols

Syntax: ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2]

[TLSv1.3];

Default TLSv1 TLSv1.1 TLSv1.2 TLSv1.3

Context: http, server

Enables the specified protocols.
If the directive is specified on the server level, the value from the default

server can be used. Details are provided in the “Virtual server selection”
section.

The TLSv1.1 and TLSv1.2 parameters (1.1.13, 1.0.12) work only when
OpenSSL 1.0.1 or higher is used.

The TLSv1.3 parameter (1.13.0) works only when OpenSSL 1.1.1 or
higher is used.

The TLSv1.3 parameter is used by default since 1.23.4.

ssl reject handshake

Syntax: ssl_reject_handshake on | off;

Default off

Context: http, server
This directive appeared in version 1.19.4.

If enabled, SSL handshakes in the server block will be rejected.
For example, in the following configuration, SSL handshakes with server

names other than example.com are rejected:

server {
listen 443 ssl default_server;
ssl_reject_handshake on;

}

server {
listen 443 ssl;
server_name example.com;
ssl_certificate example.com.crt;
ssl_certificate_key example.com.key;

}

Nginx, Inc. p.319 of 563

https://nginx.org/en/docs/http/server_names.html#virtual_server_selection

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

ssl session cache

Syntax: ssl_session_cache off | none | [builtin[:size]]

[shared:name:size];

Default none

Context: http, server

Sets the types and sizes of caches that store session parameters. A cache
can be of any of the following types:

off
the use of a session cache is strictly prohibited: nginx explicitly tells a
client that sessions may not be reused.

none
the use of a session cache is gently disallowed: nginx tells a client that
sessions may be reused, but does not actually store session parameters
in the cache.

builtin
a cache built in OpenSSL; used by one worker process only. The cache
size is specified in sessions. If size is not given, it is equal to 20480
sessions. Use of the built-in cache can cause memory fragmentation.

shared
a cache shared between all worker processes. The cache size is specified
in bytes; one megabyte can store about 4000 sessions. Each shared cache
should have an arbitrary name. A cache with the same name can be used
in several virtual servers. It is also used to automatically generate, store,
and periodically rotate TLS session ticket keys (1.23.2) unless configured
explicitly using the ssl session ticket key directive.

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin:1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more
efficient.

ssl session ticket key

Syntax: ssl_session_ticket_key file;

Default —

Context: http, server
This directive appeared in version 1.5.7.

Sets a file with the secret key used to encrypt and decrypt TLS session
tickets. The directive is necessary if the same key has to be shared between
multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session
tickets. This allows configuring key rotation, for example:

Nginx, Inc. p.320 of 563

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

ssl_session_ticket_key current.key;
ssl_session_ticket_key previous.key;

The file must contain 80 or 48 bytes of random data and can be created
using the following command:

openssl rand 80 > ticket.key

Depending on the file size either AES256 (for 80-byte keys, 1.11.8) or
AES128 (for 48-byte keys) is used for encryption.

ssl session tickets

Syntax: ssl_session_tickets on | off;

Default on

Context: http, server
This directive appeared in version 1.5.9.

Enables or disables session resumption through TLS session tickets.

ssl session timeout

Syntax: ssl_session_timeout time;

Default 5m

Context: http, server

Specifies a time during which a client may reuse the session parameters.

ssl stapling

Syntax: ssl_stapling on | off;

Default off

Context: http, server
This directive appeared in version 1.3.7.

Enables or disables stapling of OCSP responses by the server. Example:

ssl_stapling on;
resolver 192.0.2.1;

For the OCSP stapling to work, the certificate of the server certificate
issuer should be known. If the ssl certificate file does not contain intermediate
certificates, the certificate of the server certificate issuer should be present in
the ssl trusted certificate file.

For a resolution of the OCSP responder hostname, the resolver directive
should also be specified.

Nginx, Inc. p.321 of 563

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc6066#section-8

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

ssl stapling file

Syntax: ssl_stapling_file file;

Default —

Context: http, server
This directive appeared in version 1.3.7.

When set, the stapled OCSP response will be taken from the specified file
instead of querying the OCSP responder specified in the server certificate.

The file should be in the DER format as produced by the“openssl ocsp”
command.

ssl stapling responder

Syntax: ssl_stapling_responder url;

Default —

Context: http, server
This directive appeared in version 1.3.7.

Overrides the URL of the OCSP responder specified in the “Authority
Information Access” certificate extension.

Only “http://” OCSP responders are supported:

ssl_stapling_responder http://ocsp.example.com/;

ssl stapling verify

Syntax: ssl_stapling_verify on | off;

Default off

Context: http, server
This directive appeared in version 1.3.7.

Enables or disables verification of OCSP responses by the server.
For verification to work, the certificate of the server certificate issuer, the

root certificate, and all intermediate certificates should be configured as trusted
using the ssl trusted certificate directive.

ssl trusted certificate

Syntax: ssl_trusted_certificate file;

Default —

Context: http, server
This directive appeared in version 1.3.7.

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates and OCSP responses if ssl stapling is enabled.

In contrast to the certificate set by ssl client certificate, the list of these
certificates will not be sent to clients.

Nginx, Inc. p.322 of 563

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

ssl verify client

Syntax: ssl_verify_client on | off | optional | optional_no_ca;

Default off

Context: http, server

Enables verification of client certificates. The verification result is stored
in the $ssl client verify variable.

The optional parameter (0.8.7+) requests the client certificate and
verifies it if the certificate is present.

The optional_no_ca parameter (1.3.8, 1.2.5) requests the client
certificate but does not require it to be signed by a trusted CA certificate.
This is intended for the use in cases when a service that is external to nginx
performs the actual certificate verification. The contents of the certificate is
accessible through the $ssl client cert variable.

ssl verify depth

Syntax: ssl_verify_depth number;

Default 1

Context: http, server

Sets the verification depth in the client certificates chain.

2.49.4 Error Processing

The ngx_http_ssl_module module supports several non-standard
error codes that can be used for redirects using the error page directive:

495
an error has occurred during the client certificate verification;

496
a client has not presented the required certificate;

497
a regular request has been sent to the HTTPS port.

The redirection happens after the request is fully parsed and the variables,
such as $request uri, $uri, $args and others, are available.

2.49.5 Embedded Variables

The ngx_http_ssl_module module supports embedded variables:

$ssl alpn protocol
returns the protocol selected by ALPN during the SSL handshake, or an
empty string otherwise (1.21.4);

$ssl cipher
returns the name of the cipher used for an established SSL connection;

Nginx, Inc. p.323 of 563

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

$ssl ciphers
returns the list of ciphers supported by the client (1.11.7). Known ciphers
are listed by names, unknown are shown in hexadecimal, for example:

AES128-SHA:AES256-SHA:0x00ff

The variable is fully supported only when using OpenSSL version 1.0.2
or higher. With older versions, the variable is available only for new
sessions and lists only known ciphers.

$ssl client escaped cert
returns the client certificate in the PEM format (urlencoded) for an
established SSL connection (1.13.5);

$ssl client cert
returns the client certificate in the PEM format for an established SSL
connection, with each line except the first prepended with the tab
character; this is intended for the use in the proxy set header directive;

The variable is deprecated, the $ssl client escaped cert variable should
be used instead.

$ssl client fingerprint
returns the SHA1 fingerprint of the client certificate for an established
SSL connection (1.7.1);

$ssl client i dn
returns the “issuer DN” string of the client certificate for an established
SSL connection according to RFC 2253 (1.11.6);

$ssl client i dn legacy
returns the “issuer DN” string of the client certificate for an established
SSL connection;

Prior to version 1.11.6, the variable name was $ssl client i dn.

$ssl client raw cert
returns the client certificate in the PEM format for an established SSL
connection;

$ssl client s dn
returns the “subject DN” string of the client certificate for an established
SSL connection according to RFC 2253 (1.11.6);

$ssl client s dn legacy
returns the “subject DN” string of the client certificate for an established
SSL connection;

Nginx, Inc. p.324 of 563

https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc2253

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

Prior to version 1.11.6, the variable name was $ssl client s dn.

$ssl client serial
returns the serial number of the client certificate for an established SSL
connection;

$ssl client v end
returns the end date of the client certificate (1.11.7);

$ssl client v remain
returns the number of days until the client certificate expires (1.11.7);

$ssl client v start
returns the start date of the client certificate (1.11.7);

$ssl client verify
returns the result of client certificate verification: “SUCCESS”,
“FAILED:reason”, and “NONE” if a certificate was not present;

Prior to version 1.11.7, the “FAILED” result did not contain the reason
string.

$ssl curve
returns the negotiated curve used for SSL handshake key exchange
process (1.21.5). Known curves are listed by names, unknown are shown
in hexadecimal, for example:

prime256v1

The variable is supported only when using OpenSSL version 3.0 or
higher. With older versions, the variable value will be an empty string.

$ssl curves
returns the list of curves supported by the client (1.11.7). Known curves
are listed by names, unknown are shown in hexadecimal, for example:

0x001d:prime256v1:secp521r1:secp384r1

The variable is supported only when using OpenSSL version 1.0.2 or
higher. With older versions, the variable value will be an empty string.

The variable is available only for new sessions.

$ssl early data
returns “1” if TLS 1.3 early data is used and the handshake is not
complete, otherwise “” (1.15.3).

$ssl protocol
returns the protocol of an established SSL connection;

Nginx, Inc. p.325 of 563

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP SSL MODULE

$ssl server name
returns the server name requested through SNI (1.7.0);

$ssl session id
returns the session identifier of an established SSL connection;

$ssl session reused
returns “r” if an SSL session was reused, or “.” otherwise (1.5.11).

Nginx, Inc. p.326 of 563

http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP STATUS MODULE

2.50 Module ngx http status module

2.50.1 Summary . 327
2.50.2 Example Configuration 327
2.50.3 Directives . 328

status . 328
status format . 328
status zone . 329

2.50.4 Data . 329
2.50.5 Compatibility . 336

2.50.1 Summary

The ngx_http_status_module module provides access to various
status information.

This module was available as part of our commercial subscription until
1.13.10. It was superseded by the ngx http api module module in 1.13.3.

2.50.2 Example Configuration

http {
upstream backend {

zone http_backend 64k;

server backend1.example.com weight=5;
server backend2.example.com;

}

proxy_cache_path /data/nginx/cache_backend keys_zone=cache_backend:10m;

server {
server_name backend.example.com;

location / {
proxy_pass http://backend;
proxy_cache cache_backend;

health_check;
}

status_zone server_backend;
}

server {
listen 127.0.0.1;

location /upstream_conf {
upstream_conf;

}

location /status {
status;

}

location = /status.html {
}

Nginx, Inc. p.327 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP STATUS MODULE

}
}

stream {
upstream backend {

zone stream_backend 64k;

server backend1.example.com:12345 weight=5;
server backend2.example.com:12345;

}

server {
listen 127.0.0.1:12345;
proxy_pass backend;
status_zone server_backend;
health_check;

}
}

Examples of status requests with this configuration:

http://127.0.0.1/status
http://127.0.0.1/status/nginx_version
http://127.0.0.1/status/caches/cache_backend
http://127.0.0.1/status/upstreams
http://127.0.0.1/status/upstreams/backend
http://127.0.0.1/status/upstreams/backend/peers/1
http://127.0.0.1/status/upstreams/backend/peers/1/weight
http://127.0.0.1/status/stream
http://127.0.0.1/status/stream/upstreams
http://127.0.0.1/status/stream/upstreams/backend
http://127.0.0.1/status/stream/upstreams/backend/peers/1
http://127.0.0.1/status/stream/upstreams/backend/peers/1/weight

The simple monitoring page is shipped with this distribution, accessible
as “/status.html” in the default configuration. It requires the locations
“/status” and “/status.html” to be configured as shown above.

2.50.3 Directives

status

Syntax: status;

Default —

Context: location

The status information will be accessible from the surrounding location.
Access to this location should be limited.

status format

Syntax: status_format json;

Syntax: status_format jsonp [callback];

Default json

Context: http, server, location

By default, status information is output in the JSON format.
Alternatively, data may be output as JSONP. The callback parameter

specifies the name of a callback function. Parameter value can contain

Nginx, Inc. p.328 of 563

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP STATUS MODULE

variables. If parameter is omitted, or the computed value is an empty string,
then “ngx_status_jsonp_callback” is used.

status zone

Syntax: status_zone zone;

Default —

Context: server

Enables collection of virtual http or stream (1.7.11) server status
information in the specified zone. Several servers may share the same zone.

2.50.4 Data

The following status information is provided:

version
Version of the provided data set. The current version is 8.

nginx_version
Version of nginx.

nginx_build
Name of nginx build.

address
The address of the server that accepted status request.

generation
The total number of configuration reloads.

load_timestamp
Time of the last reload of configuration, in milliseconds since Epoch.

timestamp
Current time in milliseconds since Epoch.

pid
The ID of the worker process that handled status request.

ppid
The ID of the master process that started the worker process.

processes

respawned
The total number of abnormally terminated and respawned child
processes.

connections

accepted
The total number of accepted client connections.

dropped
The total number of dropped client connections.

active
The current number of active client connections.

Nginx, Inc. p.329 of 563

https://nginx.org/en/docs/control.html#reconfiguration

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP STATUS MODULE

idle
The current number of idle client connections.

ssl

handshakes
The total number of successful SSL handshakes.

handshakes_failed
The total number of failed SSL handshakes.

session_reuses
The total number of session reuses during SSL handshake.

requests

total
The total number of client requests.

current
The current number of client requests.

server_zones
For each status zone:

processing
The number of client requests that are currently being processed.

requests
The total number of client requests received from clients.

responses

total
The total number of responses sent to clients.

1xx, 2xx, 3xx, 4xx, 5xx
The number of responses with status codes 1xx, 2xx, 3xx, 4xx,
and 5xx.

discarded
The total number of requests completed without sending a response.

received
The total number of bytes received from clients.

sent
The total number of bytes sent to clients.

slabs
For each shared memory zone that uses slab allocator:

pages

used
The current number of used memory pages.

free
The current number of free memory pages.

slots
For each memory slot size (8, 16, 32, 64, 128, etc.) the following
data are provided:

Nginx, Inc. p.330 of 563

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP STATUS MODULE

used
The current number of used memory slots.

free
The current number of free memory slots.

reqs
The total number of attempts to allocate memory of specified
size.

fails
The number of unsuccessful attempts to allocate memory of
specified size.

upstreams
For each dynamically configurable group, the following data are provided:

peers
For each server, the following data are provided:

id
The ID of the server.

server
An address of the server.

name
The name of the server specified in the server directive.

service
The service parameter value of the server directive.

backup
A boolean value indicating whether the server is a backup
server.

weight
Weight of the server.

state
Current state, which may be one of“up”,“draining”,“down”,
“unavail”, “checking”, or “unhealthy”.

active
The current number of active connections.

max_conns
The max conns limit for the server.

requests
The total number of client requests forwarded to this server.

responses

total
The total number of responses obtained from this server.

1xx, 2xx, 3xx, 4xx, 5xx
The number of responses with status codes 1xx, 2xx, 3xx,
4xx, and 5xx.

sent
The total number of bytes sent to this server.

Nginx, Inc. p.331 of 563

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP STATUS MODULE

received
The total number of bytes received from this server.

fails
The total number of unsuccessful attempts to communicate
with the server.

unavail
How many times the server became unavailable for client
requests (state “unavail”) due to the number of unsuccessful
attempts reaching the max fails threshold.

health_checks

checks
The total number of health check requests made.

fails
The number of failed health checks.

unhealthy
How many times the server became unhealthy (state
“unhealthy”).

last_passed
Boolean indicating if the last health check request was
successful and passed tests.

downtime
Total time the server was in the “unavail”, “checking”, and
“unhealthy” states.

downstart
The time (in milliseconds since Epoch) when the server became
“unavail”, “checking”, or “unhealthy”.

selected
The time (in milliseconds since Epoch) when the server was last
selected to process a request (1.7.5).

header_time
The average time to get the response header from the server
(1.7.10). Prior to version 1.11.6, the field was available only
when using the least time load balancing method.

response_time
The average time to get the full response from the server
(1.7.10). Prior to version 1.11.6, the field was available only
when using the least time load balancing method.

keepalive
The current number of idle keepalive connections.

zombies
The current number of servers removed from the group but still
processing active client requests.

zone
The name of the shared memory zone that keeps the group’s
configuration and run-time state.

Nginx, Inc. p.332 of 563

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP STATUS MODULE

queue
For the requests queue, the following data are provided:

size
The current number of requests in the queue.

max_size
The maximum number of requests that can be in the queue at
the same time.

overflows
The total number of requests rejected due to the queue overflow.

caches
For each cache (configured by proxy cache path and the likes):

size
The current size of the cache.

max_size
The limit on the maximum size of the cache specified in the
configuration.

cold
A boolean value indicating whether the “cache loader” process is
still loading data from disk into the cache.

hit, stale, updating, revalidated

responses
The total number of responses read from the cache (hits, or
stale responses due to proxy cache use stale and the likes).

bytes
The total number of bytes read from the cache.

miss, expired, bypass

responses
The total number of responses not taken from the cache (misses,
expires, or bypasses due to proxy cache bypass and the likes).

bytes
The total number of bytes read from the proxied server.

responses_written
The total number of responses written to the cache.

bytes_written
The total number of bytes written to the cache.

stream

server_zones
For each status zone:

processing
The number of client connections that are currently being
processed.

connections
The total number of connections accepted from clients.

Nginx, Inc. p.333 of 563

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP STATUS MODULE

sessions

total
The total number of completed client sessions.

2xx, 4xx, 5xx
The number of sessions completed with status codes 2xx,
4xx, or 5xx.

discarded
The total number of connections completed without creating a
session.

received
The total number of bytes received from clients.

sent
The total number of bytes sent to clients.

upstreams
For each dynamically configurable group, the following data are
provided:

peers
For each server the following data are provided:

id
The ID of the server.

server
An address of the server.

name
The name of the server specified in the server directive.

service
The service parameter value of the server directive.

backup
A boolean value indicating whether the server is a backup
server.

weight
Weight of the server.

state
Current state, which may be one of “up”, “down”,
“unavail”, “checking”, or “unhealthy”.

active
The current number of connections.

max_conns
The max conns limit for the server.

connections
The total number of client connections forwarded to this
server.

connect_time
The average time to connect to the upstream server. Prior
to version 1.11.6, the field was available only when using
the least time load balancing method.

Nginx, Inc. p.334 of 563

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP STATUS MODULE

first_byte_time
The average time to receive the first byte of data. Prior to
version 1.11.6, the field was available only when using the
least time load balancing method.

response_time
The average time to receive the last byte of data. Prior to
version 1.11.6, the field was available only when using the
least time load balancing method.

sent
The total number of bytes sent to this server.

received
The total number of bytes received from this server.

fails
The total number of unsuccessful attempts to communicate
with the server.

unavail
How many times the server became unavailable for client
connections (state “unavail”) due to the number of
unsuccessful attempts reaching the max fails threshold.

health_checks

checks
The total number of health check requests made.

fails
The number of failed health checks.

unhealthy
How many times the server became unhealthy (state
“unhealthy”).

last_passed
Boolean indicating if the last health check request was
successful and passed tests.

downtime
Total time the server was in the “unavail”, “checking”,
and “unhealthy” states.

downstart
The time (in milliseconds since Epoch) when the server
became “unavail”, “checking”, or “unhealthy”.

selected
The time (in milliseconds since Epoch) when the server was
last selected to process a connection.

zombies
The current number of servers removed from the group but still
processing active client connections.

zone
The name of the shared memory zone that keeps the group’s
configuration and run-time state.

Nginx, Inc. p.335 of 563

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP STATUS MODULE

2.50.5 Compatibility

• The zone field in http and stream upstreams was added in version 8.

• The slabs status data were added in version 8.

• The checking state was added in version 8.

• The name and service fields in http and stream upstreams were added in
version 8.

• The nginx build and ppid fields were added in version 8.

• The sessions status data and the discarded field in stream server zones
were added in version 7.

• The zombies field was moved from nginx debug version in version 6.

• The ssl status data were added in version 6.

• The discarded field in server zones was added in version 6.

• The queue status data were added in version 6.

• The pid field was added in version 6.

• The list of servers in upstreams was moved into peers in version 6.

• The keepalive field of an upstream server was removed in version 5.

• The stream status data were added in version 5.

• The generation field was added in version 5.

• The respawned field in processes was added in version 5.

• The header time and response time fields in upstreams were added in
version 5.

• The selected field in upstreams was added in version 4.

• The draining state in upstreams was added in version 4.

• The id and max conns fields in upstreams were added in version 3.

• The revalidated field in caches was added in version 3.

• The server zones, caches, and load timestamp status data were added in
version 2.

Nginx, Inc. p.336 of 563

https://nginx.org/en/docs/debugging_log.html

CHAPTER 2. HTTP SERVER MODULES 2.51. MODULE NGX HTTP STUB STATUS MODULE

2.51 Module ngx http stub status module

2.51.1 Summary . 337
2.51.2 Example Configuration 337
2.51.3 Directives . 337

stub status . 337
2.51.4 Data . 338
2.51.5 Embedded Variables . 338

2.51.1 Summary

The ngx_http_stub_status_module module provides access to basic
status information.

This module is not built by default, it should be enabled with the
--with-http_stub_status_module configuration parameter.

2.51.2 Example Configuration

location = /basic_status {
stub_status;

}

This configuration creates a simple web page with basic status data which
may look like as follows:

Active connections: 291
server accepts handled requests
16630948 16630948 31070465
Reading: 6 Writing: 179 Waiting: 106

2.51.3 Directives

stub status

Syntax: stub_status;

Default —

Context: server, location

The basic status information will be accessible from the surrounding
location.

In versions prior to 1.7.5, the directive syntax required an arbitrary
argument, for example, “stub_status on”.

Nginx, Inc. p.337 of 563

CHAPTER 2. HTTP SERVER MODULES 2.51. MODULE NGX HTTP STUB STATUS MODULE

2.51.4 Data

The following status information is provided:

Active connections
The current number of active client connections including Waiting
connections.

accepts
The total number of accepted client connections.

handled
The total number of handled connections. Generally, the parameter value
is the same as accepts unless some resource limits have been reached
(for example, the worker connections limit).

requests
The total number of client requests.

Reading
The current number of connections where nginx is reading the request
header.

Writing
The current number of connections where nginx is writing the response
back to the client.

Waiting
The current number of idle client connections waiting for a request.

2.51.5 Embedded Variables

The ngx_http_stub_status_module module supports the following
embedded variables (1.3.14):

$connections active
same as the Active connections value;

$connections reading
same as the Reading value;

$connections writing
same as the Writing value;

$connections waiting
same as the Waiting value.

Nginx, Inc. p.338 of 563

CHAPTER 2. HTTP SERVER MODULES 2.52. MODULE NGX HTTP SUB MODULE

2.52 Module ngx http sub module

2.52.1 Summary . 339
2.52.2 Example Configuration 339
2.52.3 Directives . 339

sub filter . 339
sub filter last modified 339
sub filter once . 340
sub filter types . 340

2.52.1 Summary

The ngx_http_sub_module module is a filter that modifies a response
by replacing one specified string by another.

This module is not built by default, it should be enabled with the
--with-http_sub_module configuration parameter.

2.52.2 Example Configuration

location / {
sub_filter ’<a href="http://127.0.0.1:8080/’ ’<a href="https://$host/’;
sub_filter ’<img src="http://127.0.0.1:8080/’ ’<img src="https://$host/’;
sub_filter_once on;

}

2.52.3 Directives

sub filter

Syntax: sub_filter string replacement;

Default —

Context: http, server, location

Sets a string to replace and a replacement string. The string to replace
is matched ignoring the case. The string to replace (1.9.4) and replacement
string can contain variables. Several sub_filter directives can be specified
on the same configuration level (1.9.4). These directives are inherited from the
previous configuration level if and only if there are no sub_filter directives
defined on the current level.

sub filter last modified

Syntax: sub_filter_last_modified on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.1.

Allows preserving the Last-Modified header field from the original
response during replacement to facilitate response caching.

Nginx, Inc. p.339 of 563

CHAPTER 2. HTTP SERVER MODULES 2.52. MODULE NGX HTTP SUB MODULE

By default, the header field is removed as contents of the response are
modified during processing.

sub filter once

Syntax: sub_filter_once on | off;

Default on

Context: http, server, location

Indicates whether to look for each string to replace once or repeatedly.

sub filter types

Syntax: sub_filter_types mime-type . . . ;

Default text/html

Context: http, server, location

Enables string replacement in responses with the specified MIME types in
addition to “text/html”. The special value “*” matches any MIME type
(0.8.29).

Nginx, Inc. p.340 of 563

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

2.53 Module ngx http upstream module

2.53.1 Summary . 341
2.53.2 Example Configuration 341
2.53.3 Directives . 342

upstream . 342
server . 342
zone . 345
state . 345
hash . 346
ip hash . 346
keepalive . 347
keepalive requests . 348
keepalive time . 349
keepalive timeout . 349
ntlm . 349
least conn . 350
least time . 350
queue . 351
random . 351
resolver . 351
resolver timeout . 352
sticky . 352
sticky cookie insert . 355

2.53.4 Embedded Variables . 355

2.53.1 Summary

The ngx_http_upstream_module module is used to define groups of
servers that can be referenced by the proxy pass, fastcgi pass, uwsgi pass,
scgi pass, memcached pass, and grpc pass directives.

2.53.2 Example Configuration

upstream backend {
server backend1.example.com weight=5;
server backend2.example.com:8080;
server unix:/tmp/backend3;

server backup1.example.com:8080 backup;
server backup2.example.com:8080 backup;

}

server {
location / {

proxy_pass http://backend;
}

}

Dynamically configurable group with periodic health checks is available as
part of our commercial subscription:

Nginx, Inc. p.341 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

resolver 10.0.0.1;

upstream dynamic {
zone upstream_dynamic 64k;

server backend1.example.com weight=5;
server backend2.example.com:8080 fail_timeout=5s slow_start=30s;
server 192.0.2.1 max_fails=3;
server backend3.example.com resolve;
server backend4.example.com service=http resolve;

server backup1.example.com:8080 backup;
server backup2.example.com:8080 backup;

}

server {
location / {

proxy_pass http://dynamic;
health_check;

}
}

2.53.3 Directives

upstream

Syntax: upstream name { . . . }
Default —

Context: http

Defines a group of servers. Servers can listen on different ports. In addition,
servers listening on TCP and UNIX-domain sockets can be mixed.

Example:

upstream backend {
server backend1.example.com weight=5;
server 127.0.0.1:8080 max_fails=3 fail_timeout=30s;
server unix:/tmp/backend3;

server backup1.example.com backup;
}

By default, requests are distributed between the servers using a weighted
round-robin balancing method. In the above example, each 7 requests will
be distributed as follows: 5 requests go to backend1.example.com and
one request to each of the second and third servers. If an error occurs during
communication with a server, the request will be passed to the next server, and
so on until all of the functioning servers will be tried. If a successful response
could not be obtained from any of the servers, the client will receive the result
of the communication with the last server.

server

Syntax: server address [parameters];

Default —

Context: upstream

Nginx, Inc. p.342 of 563

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

Defines the address and other parameters of a server. The address can
be specified as a domain name or IP address, with an optional port, or as
a UNIX-domain socket path specified after the “unix:” prefix. If a port is
not specified, the port 80 is used. A domain name that resolves to several IP
addresses defines multiple servers at once.

The following parameters can be defined:

weight=number
sets the weight of the server, by default, 1.

max_conns=number
limits the maximum number of simultaneous active connections to the
proxied server (1.11.5). Default value is zero, meaning there is no limit.
If the server group does not reside in the shared memory, the limitation
works per each worker process.

If idle keepalive connections, multiple workers, and the shared memory
are enabled, the total number of active and idle connections to the
proxied server may exceed the max_conns value.

Since version 1.5.9 and prior to version 1.11.5, this parameter was
available as part of our commercial subscription.

max_fails=number
sets the number of unsuccessful attempts to communicate with the
server that should happen in the duration set by the fail_timeout
parameter to consider the server unavailable for a duration also
set by the fail_timeout parameter. By default, the number
of unsuccessful attempts is set to 1. The zero value disables the
accounting of attempts. What is considered an unsuccessful attempt
is defined by the proxy next upstream, fastcgi next upstream, uwsgi -
next upstream, scgi next upstream, memcached next upstream, and
grpc next upstream directives.

fail_timeout=time
sets

• the time during which the specified number of unsuccessful attempts
to communicate with the server should happen to consider the server
unavailable;

• and the period of time the server will be considered unavailable.

By default, the parameter is set to 10 seconds.

backup
marks the server as a backup server. It will be passed requests when the
primary servers are unavailable.

Nginx, Inc. p.343 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

The parameter cannot be used along with the hash, ip hash, and
random load balancing methods.

down
marks the server as permanently unavailable.

Additionally, the following parameters are available as part of our
commercial subscription:

resolve
monitors changes of the IP addresses that correspond to a domain name
of the server, and automatically modifies the upstream configuration
without the need of restarting nginx (1.5.12). The server group must
reside in the shared memory.
In order for this parameter to work, the resolver directive must be
specified in the http block or in the corresponding upstream block.

route=string
sets the server route name.

service=name
enables resolving of DNS SRV records and sets the service name (1.9.13).
In order for this parameter to work, it is necessary to specify the resolve
parameter for the server and specify a hostname without a port number.
If the service name does not contain a dot (“.”), then the RFC-compliant
name is constructed and the TCP protocol is added to the service prefix.
For example, to look up the _http._tcp.backend.example.com
SRV record, it is necessary to specify the directive:

server backend.example.com service=http resolve;

If the service name contains one or more dots, then the name is
constructed by joining the service prefix and the server name. For
example, to look up the _http._tcp.backend.example.com and
server1.backend.example.com SRV records, it is necessary to
specify the directives:

server backend.example.com service=_http._tcp resolve;
server example.com service=server1.backend resolve;

Highest-priority SRV records (records with the same lowest-number
priority value) are resolved as primary servers, the rest of SRV records
are resolved as backup servers. If the backup parameter is specified for
the server, high-priority SRV records are resolved as backup servers, the
rest of SRV records are ignored.

slow_start=time
sets the time during which the server will recover its weight from zero
to a nominal value, when unhealthy server becomes healthy, or when
the server becomes available after a period of time it was considered
unavailable. Default value is zero, i.e. slow start is disabled.

Nginx, Inc. p.344 of 563

https://nginx.com/products/
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

The parameter cannot be used along with the hash, ip hash, and
random load balancing methods.

drain
puts the server into the “draining” mode (1.13.6). In this mode, only
requests bound to the server will be proxied to it.

Prior to version 1.13.6, the parameter could be changed only with the
API module.

If there is only a single server in a group, max_fails, fail_timeout
and slow_start parameters are ignored, and such a server will never be
considered unavailable.

zone

Syntax: zone name [size];

Default —

Context: upstream
This directive appeared in version 1.9.0.

Defines the name and size of the shared memory zone that keeps the group’s
configuration and run-time state that are shared between worker processes.
Several groups may share the same zone. In this case, it is enough to specify
the size only once.

Additionally, as part of our commercial subscription, such groups allow
changing the group membership or modifying the settings of a particular server
without the need of restarting nginx. The configuration is accessible via the
API module (1.13.3).

Prior to version 1.13.3, the configuration was accessible only via a special
location handled by upstream conf.

state

Syntax: state file;

Default —

Context: upstream
This directive appeared in version 1.9.7.

Specifies a file that keeps the state of the dynamically configurable group.
Examples:

state /var/lib/nginx/state/servers.conf; # path for Linux
state /var/db/nginx/state/servers.conf; # path for FreeBSD

The state is currently limited to the list of servers with their parameters.
The file is read when parsing the configuration and is updated each time the

Nginx, Inc. p.345 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

upstream configuration is changed. Changing the file content directly should
be avoided. The directive cannot be used along with the server directive.

Changes made during configuration reload or binary upgrade can be lost.

This directive is available as part of our commercial subscription.

hash

Syntax: hash key [consistent];

Default —

Context: upstream
This directive appeared in version 1.7.2.

Specifies a load balancing method for a server group where the client-server
mapping is based on the hashed key value. The key can contain text, variables,
and their combinations. Note that adding or removing a server from the group
may result in remapping most of the keys to different servers. The method is
compatible with the Cache::Memcached Perl library.

If the consistent parameter is specified, the ketama consistent hashing
method will be used instead. The method ensures that only a few keys will be
remapped to different servers when a server is added to or removed from the
group. This helps to achieve a higher cache hit ratio for caching servers. The
method is compatible with the Cache::Memcached::Fast Perl library with the
ketama points parameter set to 160.

ip hash

Syntax: ip_hash;

Default —

Context: upstream

Specifies that a group should use a load balancing method where requests
are distributed between servers based on client IP addresses. The first three
octets of the client IPv4 address, or the entire IPv6 address, are used as a
hashing key. The method ensures that requests from the same client will
always be passed to the same server except when this server is unavailable. In
the latter case client requests will be passed to another server. Most probably,
it will always be the same server as well.

IPv6 addresses are supported starting from versions 1.3.2 and 1.2.2.

If one of the servers needs to be temporarily removed, it should be marked
with the down parameter in order to preserve the current hashing of client IP
addresses.

Example:

Nginx, Inc. p.346 of 563

https://nginx.org/en/docs/control.html#reconfiguration
https://nginx.org/en/docs/control.html#upgrade
https://nginx.com/products/
https://metacpan.org/pod/Cache::Memcached
https://www.metabrew.com/article/libketama-consistent-hashing-algo-memcached-clients
https://metacpan.org/pod/Cache::Memcached::Fast

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

upstream backend {
ip_hash;

server backend1.example.com;
server backend2.example.com;
server backend3.example.com down;
server backend4.example.com;

}

Until versions 1.3.1 and 1.2.2, it was not possible to specify a weight for
servers using the ip_hash load balancing method.

keepalive

Syntax: keepalive connections;

Default —

Context: upstream
This directive appeared in version 1.1.4.

Activates the cache for connections to upstream servers.
The connections parameter sets the maximum number of idle keepalive

connections to upstream servers that are preserved in the cache of each worker
process. When this number is exceeded, the least recently used connections
are closed.

It should be particularly noted that the keepalive directive does
not limit the total number of connections to upstream servers that an
nginx worker process can open. The connections parameter should be set
to a number small enough to let upstream servers process new incoming
connections as well.

When using load balancing methods other than the default round-robin
method, it is necessary to activate them before the keepalive directive.

Example configuration of memcached upstream with keepalive connections:

upstream memcached_backend {
server 127.0.0.1:11211;
server 10.0.0.2:11211;

keepalive 32;
}

server {
...

location /memcached/ {
set $memcached_key $uri;
memcached_pass memcached_backend;

}

}

Nginx, Inc. p.347 of 563

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

For HTTP, the proxy http version directive should be set to “1.1” and the
Connection header field should be cleared:

upstream http_backend {
server 127.0.0.1:8080;

keepalive 16;
}

server {
...

location /http/ {
proxy_pass http://http_backend;
proxy_http_version 1.1;
proxy_set_header Connection "";
...

}
}

Alternatively, HTTP/1.0 persistent connections can be used by passing
the Connection: Keep-Alive header field to an upstream server,
though this method is not recommended.

For FastCGI servers, it is required to set fastcgi keep conn for keepalive
connections to work:

upstream fastcgi_backend {
server 127.0.0.1:9000;

keepalive 8;
}

server {
...

location /fastcgi/ {
fastcgi_pass fastcgi_backend;
fastcgi_keep_conn on;
...

}
}

SCGI and uwsgi protocols do not have a notion of keepalive connections.

keepalive requests

Syntax: keepalive_requests number;

Default 1000

Context: upstream
This directive appeared in version 1.15.3.

Sets the maximum number of requests that can be served through one
keepalive connection. After the maximum number of requests is made, the
connection is closed.

Nginx, Inc. p.348 of 563

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

Closing connections periodically is necessary to free per-connection memory
allocations. Therefore, using too high maximum number of requests could
result in excessive memory usage and not recommended.

Prior to version 1.19.10, the default value was 100.

keepalive time

Syntax: keepalive_time time;

Default 1h

Context: upstream
This directive appeared in version 1.19.10.

Limits the maximum time during which requests can be processed through
one keepalive connection. After this time is reached, the connection is closed
following the subsequent request processing.

keepalive timeout

Syntax: keepalive_timeout timeout;

Default 60s

Context: upstream
This directive appeared in version 1.15.3.

Sets a timeout during which an idle keepalive connection to an upstream
server will stay open.

ntlm

Syntax: ntlm;

Default —

Context: upstream
This directive appeared in version 1.9.2.

Allows proxying requests with NTLM Authentication. The upstream
connection is bound to the client connection once the client sends a request
with the Authorization header field value starting with “Negotiate” or
“NTLM”. Further client requests will be proxied through the same upstream
connection, keeping the authentication context.

In order for NTLM authentication to work, it is necessary to enable
keepalive connections to upstream servers. The proxy http version directive
should be set to “1.1” and the Connection header field should be cleared:

upstream http_backend {
server 127.0.0.1:8080;

ntlm;
}

server {
...

Nginx, Inc. p.349 of 563

https://en.wikipedia.org/wiki/Integrated_Windows_Authentication

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

location /http/ {
proxy_pass http://http_backend;
proxy_http_version 1.1;
proxy_set_header Connection "";
...

}
}

When using load balancer methods other than the default round-robin
method, it is necessary to activate them before the ntlm directive.

This directive is available as part of our commercial subscription.

least conn

Syntax: least_conn;

Default —

Context: upstream
This directive appeared in versions 1.3.1 and 1.2.2.

Specifies that a group should use a load balancing method where a request
is passed to the server with the least number of active connections, taking into
account weights of servers. If there are several such servers, they are tried in
turn using a weighted round-robin balancing method.

least time

Syntax: least_time header | last_byte [inflight];

Default —

Context: upstream
This directive appeared in version 1.7.10.

Specifies that a group should use a load balancing method where a request
is passed to the server with the least average response time and least number of
active connections, taking into account weights of servers. If there are several
such servers, they are tried in turn using a weighted round-robin balancing
method.

If the header parameter is specified, time to receive the response header
is used. If the last_byte parameter is specified, time to receive the full
response is used. If the inflight parameter is specified (1.11.6), incomplete
requests are also taken into account.

Prior to version 1.11.6, incomplete requests were taken into account by
default.

This directive is available as part of our commercial subscription.

Nginx, Inc. p.350 of 563

https://nginx.com/products/
https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

queue

Syntax: queue number [timeout=time];

Default —

Context: upstream
This directive appeared in version 1.5.12.

If an upstream server cannot be selected immediately while processing a
request, the request will be placed into the queue. The directive specifies the
maximum number of requests that can be in the queue at the same time. If
the queue is filled up, or the server to pass the request to cannot be selected
within the time period specified in the timeout parameter, the 502 Bad
Gateway error will be returned to the client.

The default value of the timeout parameter is 60 seconds.

When using load balancer methods other than the default round-robin
method, it is necessary to activate them before the queue directive.

This directive is available as part of our commercial subscription.

random

Syntax: random [two [method]];

Default —

Context: upstream
This directive appeared in version 1.15.1.

Specifies that a group should use a load balancing method where a request
is passed to a randomly selected server, taking into account weights of servers.

The optional two parameter instructs nginx to randomly select two servers
and then choose a server using the specified method. The default method is
least_conn which passes a request to a server with the least number of
active connections.

The least_time method passes a request to a server with the least
average response time and least number of active connections. If least_-
time=header is specified, the time to receive the response header is used. If
least_time=last_byte is specified, the time to receive the full response
is used.

The least_time method is available as a part of our
commercial subscription.

resolver

Syntax: resolver address . . . [valid=time] [ipv4=on|off] [ipv6=on|off]

[status_zone=zone];

Default —

Context: upstream

Nginx, Inc. p.351 of 563

https://nginx.com/products/
https://homes.cs.washington.edu/~karlin/papers/balls.pdf
https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

This directive appeared in version 1.17.5.

Configures name servers used to resolve names of upstream servers into
addresses, for example:

resolver 127.0.0.1 [::1]:5353;

The address can be specified as a domain name or IP address, with an
optional port. If port is not specified, the port 53 is used. Name servers are
queried in a round-robin fashion.

By default, nginx will look up both IPv4 and IPv6 addresses while resolving.
If looking up of IPv4 or IPv6 addresses is not desired, the ipv4=off (1.23.1)
or the ipv6=off parameter can be specified.

By default, nginx caches answers using the TTL value of a response. An
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid=30s;

To prevent DNS spoofing, it is recommended configuring DNS servers in
a properly secured trusted local network.

The optional status_zone parameter enables collection of DNS server
statistics of requests and responses in the specified zone.

This directive is available as part of our commercial subscription.

resolver timeout

Syntax: resolver_timeout time;

Default 30s

Context: upstream
This directive appeared in version 1.17.5.

Sets a timeout for name resolution, for example:

resolver_timeout 5s;

This directive is available as part of our commercial subscription.

sticky

Syntax: sticky cookie name [expires=time] [domain=domain] [httponly]

[samesite=strict|lax|none|$variable] [secure] [path=path];

Syntax: sticky route $variable . . . ;

Syntax: sticky learn create=$variable lookup=$variable zone=name:size

[timeout=time] [header] [sync];

Default —

Context: upstream

Nginx, Inc. p.352 of 563

https://nginx.com/products/
https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

This directive appeared in version 1.5.7.

Enables session affinity, which causes requests from the same client to be
passed to the same server in a group of servers. Three methods are available:

cookie
When the cookie method is used, information about the designated
server is passed in an HTTP cookie generated by nginx:

upstream backend {
server backend1.example.com;
server backend2.example.com;

sticky cookie srv_id expires=1h domain=.example.com path=/;
}

A request that comes from a client not yet bound to a particular server
is passed to the server selected by the configured balancing method.
Further requests with this cookie will be passed to the designated server.
If the designated server cannot process a request, the new server is
selected as if the client has not been bound yet.

As a load balancing method always tries to evenly distribute the load
considering already bound requests, the server with a higher number
of active bound requests has less possibility of getting new unbound
requests.

The first parameter sets the name of the cookie to be set or inspected.
The cookie value is a hexadecimal representation of the MD5 hash of
the IP address and port, or of the UNIX-domain socket path. However,
if the “route” parameter of the server directive is specified, the cookie
value will be the value of the “route” parameter:

upstream backend {
server backend1.example.com route=a;
server backend2.example.com route=b;

sticky cookie srv_id expires=1h domain=.example.com path=/;
}

In this case, the value of the “srv_id” cookie will be either a or b.
Additional parameters may be as follows:

expires=time
Sets the time for which a browser should keep the cookie. The
special value max will cause the cookie to expire on“31 Dec 2037
23:55:55 GMT”. If the parameter is not specified, it will cause the
cookie to expire at the end of a browser session.

domain=domain
Defines the domain for which the cookie is set. Parameter value can
contain variables (1.11.5).

Nginx, Inc. p.353 of 563

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

httponly
Adds the HttpOnly attribute to the cookie (1.7.11).

samesite=strict | lax | none | $variable
Adds the SameSite (1.19.4) attribute to the cookie with one of the
following values: Strict, Lax, None, or using variables (1.23.3).
In the latter case, if the variable value is empty, the SameSite
attribute will not be added to the cookie, if the value is resolved to
Strict, Lax, or None, the corresponding value will be assigned,
otherwise the Strict value will be assigned.

secure
Adds the Secure attribute to the cookie (1.7.11).

path=path
Defines the path for which the cookie is set.

If any parameters are omitted, the corresponding cookie fields are not
set.

route
When the route method is used, proxied server assigns client a route
on receipt of the first request. All subsequent requests from this client
will carry routing information in a cookie or URI. This information
is compared with the “route” parameter of the server directive to
identify the server to which the request should be proxied. If the
“route”parameter is not specified, the route name will be a hexadecimal
representation of the MD5 hash of the IP address and port, or of the
UNIX-domain socket path. If the designated server cannot process a
request, the new server is selected by the configured balancing method
as if there is no routing information in the request.
The parameters of the route method specify variables that may contain
routing information. The first non-empty variable is used to find the
matching server.
Example:

map $cookie_jsessionid $route_cookie {
~.+\.(?P<route>\w+)$ $route;

}

map $request_uri $route_uri {
~jsessionid=.+\.(?P<route>\w+)$ $route;

}

upstream backend {
server backend1.example.com route=a;
server backend2.example.com route=b;

sticky route $route_cookie $route_uri;
}

Here, the route is taken from the “JSESSIONID” cookie if present in a
request. Otherwise, the route from the URI is used.

learn
When the learn method (1.7.1) is used, nginx analyzes upstream server
responses and learns server-initiated sessions usually passed in an HTTP

Nginx, Inc. p.354 of 563

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

cookie.

upstream backend {
server backend1.example.com:8080;
server backend2.example.com:8081;

sticky learn
create=$upstream_cookie_examplecookie
lookup=$cookie_examplecookie
zone=client_sessions:1m;

}

In the example, the upstream server creates a session by setting the
cookie “EXAMPLECOOKIE” in the response. Further requests with this
cookie will be passed to the same server. If the server cannot process the
request, the new server is selected as if the client has not been bound
yet.
The parameters create and lookup specify variables that indicate how
new sessions are created and existing sessions are searched, respectively.
Both parameters may be specified more than once, in which case the first
non-empty variable is used.
Sessions are stored in a shared memory zone, whose name and size are
configured by the zone parameter. One megabyte zone can store about
4000 sessions on the 64-bit platform. The sessions that are not accessed
during the time specified by the timeout parameter get removed from
the zone. By default, timeout is set to 10 minutes.
The header parameter (1.13.1) allows creating a session right after
receiving response headers from the upstream server.
The sync parameter (1.13.8) enables synchronization of the shared
memory zone.

This directive is available as part of our commercial subscription.

sticky cookie insert

Syntax: sticky_cookie_insert name [expires=time] [domain=domain]

[path=path];

Default —

Context: upstream

This directive is obsolete since version 1.5.7. An equivalent sticky directive
with a new syntax should be used instead:

sticky cookie name [expires=time] [domain=domain]
[path=path];

2.53.4 Embedded Variables

The ngx_http_upstream_module module supports the following
embedded variables:

Nginx, Inc. p.355 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

$upstream addr
keeps the IP address and port, or the path to the UNIX-
domain socket of the upstream server. If several servers were
contacted during request processing, their addresses are separated
by commas, e.g. “192.168.1.1:80, 192.168.1.2:80, unix:/
tmp/sock”. If an internal redirect from one server group to
another happens, initiated by X-Accel-Redirect or error page, then
the server addresses from different groups are separated by colons,
e.g. “192.168.1.1:80, 192.168.1.2:80, unix:/tmp/sock
: 192.168.10.1:80, 192.168.10.2:80”. If a server cannot be
selected, the variable keeps the name of the server group.

$upstream bytes received
number of bytes received from an upstream server (1.11.4). Values from
several connections are separated by commas and colons like addresses
in the $upstream addr variable.

$upstream bytes sent
number of bytes sent to an upstream server (1.15.8). Values from several
connections are separated by commas and colons like addresses in the
$upstream addr variable.

$upstream cache status
keeps the status of accessing a response cache (0.8.3). The status
can be either “MISS”, “BYPASS”, “EXPIRED”, “STALE”, “UPDATING”,
“REVALIDATED”, or “HIT”.

$upstream connect time
keeps time spent on establishing a connection with the upstream server
(1.9.1); the time is kept in seconds with millisecond resolution. In case of
SSL, includes time spent on handshake. Times of several connections are
separated by commas and colons like addresses in the $upstream addr
variable.

$upstream cookie name
cookie with the specified name sent by the upstream server in the
Set-Cookie response header field (1.7.1). Only the cookies from the
response of the last server are saved.

$upstream header time
keeps time spent on receiving the response header from the upstream
server (1.7.10); the time is kept in seconds with millisecond resolution.
Times of several responses are separated by commas and colons like
addresses in the $upstream addr variable.

$upstream http name
keep server response header fields. For example, the Server response
header field is available through the $upstream http server variable. The
rules of converting header field names to variable names are the same
as for the variables that start with the “$http ” prefix. Only the header
fields from the response of the last server are saved.

$upstream last server name
keeps the name of last selected upstream server (1.25.3); allows passing

Nginx, Inc. p.356 of 563

CHAPTER 2. HTTP SERVER MODULES 2.53. MODULE NGX HTTP UPSTREAM MODULE

it through SNI:

proxy_ssl_server_name on;
proxy_ssl_name $upstream_last_server_name;

This variable is available as part of our commercial subscription.

$upstream queue time
keeps time the request spent in the upstream queue (1.13.9); the time is
kept in seconds with millisecond resolution. Times of several responses
are separated by commas and colons like addresses in the $upstream addr
variable.

$upstream response length
keeps the length of the response obtained from the upstream server
(0.7.27); the length is kept in bytes. Lengths of several responses are
separated by commas and colons like addresses in the $upstream addr
variable.

$upstream response time
keeps time spent on receiving the response from the upstream server; the
time is kept in seconds with millisecond resolution. Times of several
responses are separated by commas and colons like addresses in the
$upstream addr variable.

$upstream status
keeps status code of the response obtained from the upstream server.
Status codes of several responses are separated by commas and colons
like addresses in the $upstream addr variable. If a server cannot be
selected, the variable keeps the 502 Bad Gateway status code.

$upstream trailer name
keeps fields from the end of the response obtained from the upstream
server (1.13.10).

Nginx, Inc. p.357 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.54. MODULE NGX HTTP UPSTREAM CONF MODULE

2.54 Module ngx http upstream conf module

2.54.1 Summary . 358
2.54.2 Example Configuration 358
2.54.3 Directives . 358

upstream conf . 358

2.54.1 Summary

The ngx_http_upstream_conf_module module allows configuring
upstream server groups on-the-fly via a simple HTTP interface without the
need of restarting nginx. The http or stream server group must reside in the
shared memory.

This module was available as part of our commercial subscription until
1.13.10. It was superseded by the ngx http api module module in 1.13.3.

2.54.2 Example Configuration

upstream backend {
zone upstream_backend 64k;

...
}

server {
location /upstream_conf {

upstream_conf;
allow 127.0.0.1;
deny all;

}
}

2.54.3 Directives

upstream conf

Syntax: upstream_conf;

Default —

Context: location

Turns on the HTTP interface of upstream configuration in the surrounding
location. Access to this location should be limited.

Configuration commands can be used to:

• view the group configuration;

• view, modify, or remove a server;

• add a new server.

Nginx, Inc. p.358 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.54. MODULE NGX HTTP UPSTREAM CONF MODULE

Since addresses in a group are not required to be unique, specific servers
in a group are referenced by their IDs. IDs are assigned automatically and
shown when adding a new server or viewing the group configuration.

A configuration command consists of parameters passed as request
arguments, for example:

http://127.0.0.1/upstream_conf?upstream=backend

The following parameters are supported:

stream=
Selects a stream upstream server group. Without this parameter, selects
an http upstream server group.

upstream=name
Selects a group to work with. This parameter is mandatory.

id=number
Selects a server for viewing, modifying, or removing.

remove=
Removes a server from the group.

add=
Adds a new server to the group.

backup=
Required to add a backup server.

Before version 1.7.2, backup= was also required to view, modify, or
remove existing backup servers.

server=address
Same as the“address”parameter of the http or stream upstream server.
When adding a server, it is possible to specify it as a domain name.
In this case, changes of the IP addresses that correspond to a domain
name will be monitored and automatically applied to the upstream
configuration without the need of restarting nginx (1.7.2). This requires
the “resolver” directive in the http or stream block. See also the
“resolve” parameter of the http or stream upstream server.

service=name
Same as the“service”parameter of the http or stream upstream server
(1.9.13).

weight=number
Same as the “weight” parameter of the http or stream upstream server.

max_conns=number
Same as the “max_conns” parameter of the http or stream upstream
server.

max_fails=number
Same as the “max_fails” parameter of the http or stream upstream
server.

Nginx, Inc. p.359 of 563

CHAPTER 2. HTTP SERVER MODULES 2.54. MODULE NGX HTTP UPSTREAM CONF MODULE

fail_timeout=time
Same as the“fail_timeout”parameter of the http or stream upstream
server.

slow_start=time
Same as the “slow_start” parameter of the http or stream upstream
server.

down=
Same as the “down” parameter of the http or stream upstream server.

drain=
Puts the http upstream server into the “draining” mode (1.7.5). In this
mode, only requests bound to the server will be proxied to it.

up=
The opposite of the “down” parameter of the http or stream upstream
server.

route=string
Same as the “route” parameter of the http upstream server.

The first three parameters select an object. This can be either the whole
http or stream upstream server group, or a specific server. Without other
parameters, the configuration of the selected group or server is shown.

For example, to view the configuration of the whole group, send:

http://127.0.0.1/upstream_conf?upstream=backend

To view the configuration of a specific server, also specify its ID:

http://127.0.0.1/upstream_conf?upstream=backend&id=42

To add a new server, specify its address in the “server=” parameter.
Without other parameters specified, a server will be added with other
parameters set to their default values (see the http or stream “server”
directive).

For example, to add a new primary server, send:

http://127.0.0.1/upstream_conf?add=&upstream=backend&server=127.0.0.1:8080

To add a new backup server, send:

http://127.0.0.1/upstream_conf?add=&upstream=backend&backup=&server
=127.0.0.1:8080

To add a new primary server, set its parameters to non-default values and
mark it as “down”, send:

http://127.0.0.1/upstream_conf?add=&upstream=backend&server=127.0.0.1:8080&
weight=2&down=

To remove a server, specify its ID:

Nginx, Inc. p.360 of 563

CHAPTER 2. HTTP SERVER MODULES 2.54. MODULE NGX HTTP UPSTREAM CONF MODULE

http://127.0.0.1/upstream_conf?remove=&upstream=backend&id=42

To mark an existing server as “down”, send:

http://127.0.0.1/upstream_conf?upstream=backend&id=42&down=

To modify the address of an existing server, send:

http://127.0.0.1/upstream_conf?upstream=backend&id=42&server=192.0.2.3:8123

To modify other parameters of an existing server, send:

http://127.0.0.1/upstream_conf?upstream=backend&id=42&max_fails=3&weight=4

The above examples are for an http upstream server group. Similar
examples for a stream upstream server group require the “stream=”
parameter.

Nginx, Inc. p.361 of 563

CHAPTER 2. HTTP SERVER MODULES 2.55. MODULE NGX HTTP UPSTREAM HC MODULE

2.55 Module ngx http upstream hc module

2.55.1 Summary . 362
2.55.2 Example Configuration 362
2.55.3 Directives . 363

health check . 363
match . 364

2.55.1 Summary

The ngx_http_upstream_hc_module module allows enabling periodic
health checks of the servers in a group referenced in the surrounding location.
The server group must reside in the shared memory.

If a health check fails, the server will be considered unhealthy. If several
health checks are defined for the same group of servers, a single failure of
any check will make the corresponding server be considered unhealthy. Client
requests are not passed to unhealthy servers and servers in the“checking”state.

Please note that most of the variables will have empty values when used
with health checks.

This module is available as part of our commercial subscription.

2.55.2 Example Configuration

upstream dynamic {
zone upstream_dynamic 64k;

server backend1.example.com weight=5;
server backend2.example.com:8080 fail_timeout=5s slow_start=30s;
server 192.0.2.1 max_fails=3;

server backup1.example.com:8080 backup;
server backup2.example.com:8080 backup;

}

server {
location / {

proxy_pass http://dynamic;
health_check;

}
}

With this configuration, nginx will send “/” requests to each server in the
backend group every five seconds. If any communication error or timeout
occurs, or a proxied server responds with the status code other than 2xx or
3xx, the health check will fail, and the server will be considered unhealthy.

Health checks can be configured to test the status code of a response,
presence of certain header fields and their values, and the body contents.
Tests are configured separately using the match directive and referenced in
the match parameter of the health check directive:

Nginx, Inc. p.362 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.55. MODULE NGX HTTP UPSTREAM HC MODULE

http {
server {
...

location / {
proxy_pass http://backend;
health_check match=welcome;

}
}

match welcome {
status 200;
header Content-Type = text/html;
body ~ "Welcome to nginx!";

}
}

This configuration shows that in order for a health check to pass, the
response to a health check request should succeed, have status 200, and contain
“Welcome to nginx!” in the body.

2.55.3 Directives

health check

Syntax: health_check [parameters];

Default —

Context: location

Enables periodic health checks of the servers in a group referenced in the
surrounding location.

The following optional parameters are supported:

interval=time
sets the interval between two consecutive health checks, by default, 5
seconds.

jitter=time
sets the time within which each health check will be randomly delayed,
by default, there is no delay.

fails=number
sets the number of consecutive failed health checks of a particular server
after which this server will be considered unhealthy, by default, 1.

passes=number
sets the number of consecutive passed health checks of a particular server
after which the server will be considered healthy, by default, 1.

uri=uri
defines the URI used in health check requests, by default, “/”.

mandatory [persistent]
sets the initial “checking” state for a server until the first health check
is completed (1.11.7). Client requests are not passed to servers in the
“checking” state. If the parameter is not specified, the server will be
initially considered healthy.

Nginx, Inc. p.363 of 563

CHAPTER 2. HTTP SERVER MODULES 2.55. MODULE NGX HTTP UPSTREAM HC MODULE

The persistent parameter (1.19.7) sets the initial “up” state for a
server after reload if the server was considered healthy before reload.

match=name
specifies the match block configuring the tests that a response should
pass in order for a health check to pass. By default, the response should
have status code 2xx or 3xx.

port=number
defines the port used when connecting to a server to perform a health
check (1.9.7). By default, equals the server port.

type=grpc [grpc_service=name] [grpc_status=code]
enables periodic health checks of a gRPC server or a particular gRPC
service specified with the optional grpc_service parameter (1.19.5).
If the server does not support the gRPC Health Checking Protocol,
the optional grpc_status parameter can be used to specify non-zero
gRPC status (for example, status code “12” / “UNIMPLEMENTED”) that
will be treated as healthy:

health_check mandatory type=grpc grpc_status=12;

The type=grpc parameter must be specified after all other
directive parameters, grpc_service and grpc_status must follow
type=grpc. The parameter is not compatible with uri or match
parameters.

keepalive_time=time
enables keepalive connections for health checks and specifies the time
during which requests can be processed through one keepalive connection
(1.21.7). By default keepalive connections are disabled.

match

Syntax: match name { . . . }
Default —

Context: http

Defines the named test set used to verify responses to health check requests.
The following items can be tested in a response:

status 200;
status is 200

status ! 500;
status is not 500

status 200 204;
status is 200 or 204

status ! 301 302;
status is neither 301 nor 302

status 200-399;
status is in the range from 200 to 399

Nginx, Inc. p.364 of 563

https://github.com/grpc/grpc/blob/master/doc/health-checking.md#grpc-health-checking-protocol
https://github.com/grpc/grpc/blob/master/doc/statuscodes.md#status-codes-and-their-use-in-grpc

CHAPTER 2. HTTP SERVER MODULES 2.55. MODULE NGX HTTP UPSTREAM HC MODULE

status ! 400-599;
status is not in the range from 400 to 599

status 301-303 307;
status is either 301, 302, 303, or 307

header Content-Type = text/html;
header contains Content-Type with value text/html

header Content-Type != text/html;
header contains Content-Type with value other than text/html

header Connection ~ close;
header contains Connection with value matching regular expression
close

header Connection !~ close;
header contains Connection with value not matching regular
expression close

header Host;
header contains Host

header ! X-Accel-Redirect;
header lacks X-Accel-Redirect

body ~ "Welcome to nginx!";
body matches regular expression “Welcome to nginx!”

body !~ "Welcome to nginx!";
body does not match regular expression “Welcome to nginx!”

require $variable ...;
all specified variables are not empty and not equal to “0” (1.15.9).

If several tests are specified, the response matches only if it matches all
tests.

Only the first 256k of the response body are examined.

Examples:

status is 200, content type is "text/html",
and body contains "Welcome to nginx!"
match welcome {

status 200;
header Content-Type = text/html;
body ~ "Welcome to nginx!";

}

status is not one of 301, 302, 303, or 307, and header does not have "Refresh
:"

match not_redirect {
status ! 301-303 307;
header ! Refresh;

}

Nginx, Inc. p.365 of 563

CHAPTER 2. HTTP SERVER MODULES 2.55. MODULE NGX HTTP UPSTREAM HC MODULE

status ok and not in maintenance mode
match server_ok {

status 200-399;
body !~ "maintenance mode";

}

status is 200 or 204
map $upstream_status $good_status {

200 1;
204 1;

}

match server_ok {
require $good_status;

}

Nginx, Inc. p.366 of 563

CHAPTER 2. HTTP SERVER MODULES 2.56. MODULE NGX HTTP USERID MODULE

2.56 Module ngx http userid module

2.56.1 Summary . 367
2.56.2 Example Configuration 367
2.56.3 Directives . 367

userid . 367
userid domain . 368
userid expires . 368
userid flags . 368
userid mark . 368
userid name . 369
userid p3p . 369
userid path . 369
userid service . 369

2.56.4 Embedded Variables . 369

2.56.1 Summary

The ngx_http_userid_module module sets cookies suitable for client
identification. Received and set cookies can be logged using the embedded
variables $uid got and $uid set. This module is compatible with the mod uid
module for Apache.

2.56.2 Example Configuration

userid on;
userid_name uid;
userid_domain example.com;
userid_path /;
userid_expires 365d;
userid_p3p ’policyref="/w3c/p3p.xml", CP="CUR ADM OUR NOR STA NID"’;

2.56.3 Directives

userid

Syntax: userid on | v1 | log | off;

Default off

Context: http, server, location

Enables or disables setting cookies and logging the received cookies:

on
enables the setting of version 2 cookies and logging of the received
cookies;

v1
enables the setting of version 1 cookies and logging of the received
cookies;

Nginx, Inc. p.367 of 563

http://www.lexa.ru/programs/mod-uid-eng.html

CHAPTER 2. HTTP SERVER MODULES 2.56. MODULE NGX HTTP USERID MODULE

log
disables the setting of cookies, but enables logging of the received cookies;

off
disables the setting of cookies and logging of the received cookies.

userid domain

Syntax: userid_domain name | none;

Default none

Context: http, server, location

Defines a domain for which the cookie is set. The none parameter disables
setting of a domain for the cookie.

userid expires

Syntax: userid_expires time | max | off;

Default off

Context: http, server, location

Sets a time during which a browser should keep the cookie. The parameter
max will cause the cookie to expire on “31 Dec 2037 23:55:55 GMT”.
The parameter off will cause the cookie to expire at the end of a browser
session.

userid flags

Syntax: userid_flags off | flag . . . ;

Default off

Context: http, server, location
This directive appeared in version 1.19.3.

If the parameter is not off, defines one or more additional flags for
the cookie: secure, httponly, samesite=strict, samesite=lax,
samesite=none.

userid mark

Syntax: userid_mark letter | digit | = | off;

Default off

Context: http, server, location

If the parameter is not off, enables the cookie marking mechanism and sets
the character used as a mark. This mechanism is used to add or change userid -
p3p and/or a cookie expiration time while preserving the client identifier. A
mark can be any letter of the English alphabet (case-sensitive), digit, or the
“=” character.

If the mark is set, it is compared with the first padding symbol in the
base64 representation of the client identifier passed in a cookie. If they do not

Nginx, Inc. p.368 of 563

CHAPTER 2. HTTP SERVER MODULES 2.56. MODULE NGX HTTP USERID MODULE

match, the cookie is resent with the specified mark, expiration time, and P3P
header.

userid name

Syntax: userid_name name;

Default uid

Context: http, server, location

Sets the cookie name.

userid p3p

Syntax: userid_p3p string | none;

Default none

Context: http, server, location

Sets a value for the P3P header field that will be sent along with the cookie.
If the directive is set to the special value none, the P3P header will not be
sent in a response.

userid path

Syntax: userid_path path;

Default /

Context: http, server, location

Defines a path for which the cookie is set.

userid service

Syntax: userid_service number;

Default IP address of the server

Context: http, server, location

If identifiers are issued by multiple servers (services), each service should be
assigned its own number to ensure that client identifiers are unique. For version
1 cookies, the default value is zero. For version 2 cookies, the default value is
the number composed from the last four octets of the server’s IP address.

2.56.4 Embedded Variables

The ngx_http_userid_module module supports the following embed-
ded variables:

$uid got
The cookie name and received client identifier.

$uid reset
If the variable is set to a non-empty string that is not “0”, the client
identifiers are reset. The special value “log” additionally leads to the
output of messages about the reset identifiers to the error log.

Nginx, Inc. p.369 of 563

CHAPTER 2. HTTP SERVER MODULES 2.56. MODULE NGX HTTP USERID MODULE

$uid set
The cookie name and sent client identifier.

Nginx, Inc. p.370 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

2.57 Module ngx http uwsgi module

2.57.1 Summary . 372
2.57.2 Example Configuration 372
2.57.3 Directives . 372

uwsgi bind . 372
uwsgi buffer size . 373
uwsgi buffering . 373
uwsgi buffers . 374
uwsgi busy buffers size 374
uwsgi cache . 374
uwsgi cache background update 374
uwsgi cache bypass . 374
uwsgi cache key . 375
uwsgi cache lock . 375
uwsgi cache lock age . 375
uwsgi cache lock timeout 375
uwsgi cache max range offset 376
uwsgi cache methods . 376
uwsgi cache min uses . 376
uwsgi cache path . 376
uwsgi cache purge . 378
uwsgi cache revalidate 379
uwsgi cache use stale . 379
uwsgi cache valid . 380
uwsgi connect timeout 380
uwsgi force ranges . 381
uwsgi hide header . 381
uwsgi ignore client abort 381
uwsgi ignore headers . 381
uwsgi intercept errors 382
uwsgi limit rate . 382
uwsgi max temp file size 382
uwsgi modifier1 . 383
uwsgi modifier2 . 383
uwsgi next upstream . 383
uwsgi next upstream timeout 384
uwsgi next upstream tries 384
uwsgi no cache . 384
uwsgi param . 385
uwsgi pass . 385
uwsgi pass header . 386
uwsgi pass request body 386
uwsgi pass request headers 386
uwsgi read timeout . 386
uwsgi request buffering 386

Nginx, Inc. p.371 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

uwsgi send timeout . 387
uwsgi socket keepalive 387
uwsgi ssl certificate . 387
uwsgi ssl certificate key 387
uwsgi ssl ciphers . 388
uwsgi ssl conf command 388
uwsgi ssl crl . 388
uwsgi ssl name . 388
uwsgi ssl password file 389
uwsgi ssl protocols . 389
uwsgi ssl server name 389
uwsgi ssl session reuse 389
uwsgi ssl trusted certificate 390
uwsgi ssl verify . 390
uwsgi ssl verify depth 390
uwsgi store . 390
uwsgi store access . 391
uwsgi temp file write size 391
uwsgi temp path . 391

2.57.1 Summary

The ngx_http_uwsgi_module module allows passing requests to a
uwsgi server.

2.57.2 Example Configuration

location / {
include uwsgi_params;
uwsgi_pass localhost:9000;

}

2.57.3 Directives

uwsgi bind

Syntax: uwsgi_bind address [transparent] | off;

Default —

Context: http, server, location

Makes outgoing connections to a uwsgi server originate from the specified
local IP address with an optional port (1.11.2). Parameter value can contain
variables (1.3.12). The special value off (1.3.12) cancels the effect of the
uwsgi_bind directive inherited from the previous configuration level, which
allows the system to auto-assign the local IP address and port.

Nginx, Inc. p.372 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

The transparent parameter (1.11.0) allows outgoing connections to a
uwsgi server originate from a non-local IP address, for example, from a real IP
address of a client:

uwsgi_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run nginx
worker processes with the superuser privileges. On Linux it is not required
(1.13.8) as if the transparent parameter is specified, worker processes
inherit the CAP_NET_RAW capability from the master process. It is also
necessary to configure kernel routing table to intercept network traffic from
the uwsgi server.

uwsgi buffer size

Syntax: uwsgi_buffer_size size;

Default 4k|8k

Context: http, server, location

Sets the size of the buffer used for reading the first part of the response
received from the uwsgi server. This part usually contains a small response
header. By default, the buffer size is equal to one memory page. This is either
4K or 8K, depending on a platform. It can be made smaller, however.

uwsgi buffering

Syntax: uwsgi_buffering on | off;

Default on

Context: http, server, location

Enables or disables buffering of responses from the uwsgi server.
When buffering is enabled, nginx receives a response from the uwsgi server

as soon as possible, saving it into the buffers set by the uwsgi buffer size and
uwsgi buffers directives. If the whole response does not fit into memory, a part
of it can be saved to a temporary file on the disk. Writing to temporary files
is controlled by the uwsgi max temp file size and uwsgi temp file write size
directives.

When buffering is disabled, the response is passed to a client synchronously,
immediately as it is received. nginx will not try to read the whole response
from the uwsgi server. The maximum size of the data that nginx can receive
from the server at a time is set by the uwsgi buffer size directive.

Buffering can also be enabled or disabled by passing “yes” or “no” in the
X-Accel-Buffering response header field. This capability can be disabled
using the uwsgi ignore headers directive.

Nginx, Inc. p.373 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

uwsgi buffers

Syntax: uwsgi_buffers number size;

Default 8 4k|8k

Context: http, server, location

Sets the number and size of the buffers used for reading a response from
the uwsgi server, for a single connection. By default, the buffer size is equal to
one memory page. This is either 4K or 8K, depending on a platform.

uwsgi busy buffers size

Syntax: uwsgi_busy_buffers_size size;

Default 8k|16k

Context: http, server, location

When buffering of responses from the uwsgi server is enabled, limits the
total size of buffers that can be busy sending a response to the client while the
response is not yet fully read. In the meantime, the rest of the buffers can be
used for reading the response and, if needed, buffering part of the response to
a temporary file. By default, size is limited by the size of two buffers set by
the uwsgi buffer size and uwsgi buffers directives.

uwsgi cache

Syntax: uwsgi_cache zone | off;

Default off

Context: http, server, location

Defines a shared memory zone used for caching. The same zone can be
used in several places. Parameter value can contain variables (1.7.9). The off
parameter disables caching inherited from the previous configuration level.

uwsgi cache background update

Syntax: uwsgi_cache_background_update on | off;

Default off

Context: http, server, location
This directive appeared in version 1.11.10.

Allows starting a background subrequest to update an expired cache item,
while a stale cached response is returned to the client. Note that it is necessary
to allow the usage of a stale cached response when it is being updated.

uwsgi cache bypass

Syntax: uwsgi_cache_bypass string . . . ;

Default —

Context: http, server, location

Nginx, Inc. p.374 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

Defines conditions under which the response will not be taken from a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be taken from the cache:

uwsgi_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
uwsgi_cache_bypass $http_pragma $http_authorization;

Can be used along with the uwsgi no cache directive.

uwsgi cache key

Syntax: uwsgi_cache_key string;

Default —

Context: http, server, location

Defines a key for caching, for example

uwsgi_cache_key localhost:9000$request_uri;

uwsgi cache lock

Syntax: uwsgi_cache_lock on | off;

Default off

Context: http, server, location
This directive appeared in version 1.1.12.

When enabled, only one request at a time will be allowed to populate a new
cache element identified according to the uwsgi cache key directive by passing
a request to a uwsgi server. Other requests of the same cache element will
either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the uwsgi cache lock timeout
directive.

uwsgi cache lock age

Syntax: uwsgi_cache_lock_age time;

Default 5s

Context: http, server, location
This directive appeared in version 1.7.8.

If the last request passed to the uwsgi server for populating a new cache
element has not completed for the specified time, one more request may be
passed to the uwsgi server.

uwsgi cache lock timeout

Syntax: uwsgi_cache_lock_timeout time;

Default 5s

Context: http, server, location
This directive appeared in version 1.1.12.

Nginx, Inc. p.375 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

Sets a timeout for uwsgi cache lock. When the time expires, the request
will be passed to the uwsgi server, however, the response will not be cached.

Before 1.7.8, the response could be cached.

uwsgi cache max range offset

Syntax: uwsgi_cache_max_range_offset number;

Default —

Context: http, server, location
This directive appeared in version 1.11.6.

Sets an offset in bytes for byte-range requests. If the range is beyond the
offset, the range request will be passed to the uwsgi server and the response
will not be cached.

uwsgi cache methods

Syntax: uwsgi_cache_methods GET | HEAD | POST . . . ;

Default GET HEAD

Context: http, server, location

If the client request method is listed in this directive then the response will
be cached. “GET” and “HEAD” methods are always added to the list, though
it is recommended to specify them explicitly. See also the uwsgi no cache
directive.

uwsgi cache min uses

Syntax: uwsgi_cache_min_uses number;

Default 1

Context: http, server, location

Sets the number of requests after which the response will be cached.

uwsgi cache path

Syntax: uwsgi_cache_path path [levels=levels]

[use_temp_path=on|off] keys_zone=name:size [inactive=time]

[max_size=size] [min_free=size] [manager_files=number]

[manager_sleep=time] [manager_threshold=time]

[loader_files=number] [loader_sleep=time]

[loader_threshold=time] [purger=on|off]

[purger_files=number] [purger_sleep=time]

[purger_threshold=time];

Default —

Context: http

Sets the path and other parameters of a cache. Cache data are stored in
files. The file name in a cache is a result of applying the MD5 function to

Nginx, Inc. p.376 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

the cache key. The levels parameter defines hierarchy levels of a cache:
from 1 to 3, each level accepts values 1 or 2. For example, in the following
configuration

uwsgi_cache_path /data/nginx/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/nginx/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file
is renamed. Starting from version 0.8.9, temporary files and the cache can
be put on different file systems. However, be aware that in this case a file is
copied across two file systems instead of the cheap renaming operation. It is
thus recommended that for any given location both cache and a directory
holding temporary files are put on the same file system. A directory for
temporary files is set based on the use_temp_path parameter (1.7.10). If
this parameter is omitted or set to the value on, the directory set by the
uwsgi temp path directive for the given location will be used. If the value is
set to off, temporary files will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a
shared memory zone, whose name and size are configured by the keys_zone
parameter. One megabyte zone can store about 8 thousand keys.

As part of commercial subscription, the shared memory zone also stores
extended cache information, thus, it is required to specify a larger zone size
for the same number of keys. For example, one megabyte zone can store
about 4 thousand keys.

Cached data that are not accessed during the time specified by the
inactive parameter get removed from the cache regardless of their freshness.
By default, inactive is set to 10 minutes.

The special “cache manager” process monitors the maximum cache size set
by the max_size parameter, and the minimum amount of free space set by the
min_free (1.19.1) parameter on the file system with cache. When the size
is exceeded or there is not enough free space, it removes the least recently
used data. The data is removed in iterations configured by manager_-
files, manager_threshold, and manager_sleep parameters (1.11.5).
During one iteration no more than manager_files items are deleted (by
default, 100). The duration of one iteration is limited by the manager_-
threshold parameter (by default, 200 milliseconds). Between iterations,
a pause configured by the manager_sleep parameter (by default, 50
milliseconds) is made.

A minute after the start the special “cache loader” process is activated. It
loads information about previously cached data stored on file system into a
cache zone. The loading is also done in iterations. During one iteration no
more than loader_files items are loaded (by default, 100). Besides, the

Nginx, Inc. p.377 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

duration of one iteration is limited by the loader_threshold parameter
(by default, 200 milliseconds). Between iterations, a pause configured by the
loader_sleep parameter (by default, 50 milliseconds) is made.

Additionally, the following parameters are available as part of our
commercial subscription:

purger=on|off
Instructs whether cache entries that match a wildcard key will be
removed from the disk by the cache purger (1.7.12). Setting the
parameter to on (default is off) will activate the “cache purger” process
that permanently iterates through all cache entries and deletes the entries
that match the wildcard key.

purger_files=number
Sets the number of items that will be scanned during one iteration
(1.7.12). By default, purger_files is set to 10.

purger_threshold=number
Sets the duration of one iteration (1.7.12). By default, purger_-
threshold is set to 50 milliseconds.

purger_sleep=number
Sets a pause between iterations (1.7.12). By default, purger_sleep is
set to 50 milliseconds.

In versions 1.7.3, 1.7.7, and 1.11.10 cache header format has been changed.
Previously cached responses will be considered invalid after upgrading to a
newer nginx version.

uwsgi cache purge

Syntax: uwsgi_cache_purgestring . . . ;

Default —

Context: http, server, location
This directive appeared in version 1.5.7.

Defines conditions under which the request will be considered a cache purge
request. If at least one value of the string parameters is not empty and
is not equal to “0” then the cache entry with a corresponding cache key is
removed. The result of successful operation is indicated by returning the 204
No Content response.

If the cache key of a purge request ends with an asterisk (“*”), all cache
entries matching the wildcard key will be removed from the cache. However,
these entries will remain on the disk until they are deleted for either inactivity,
or processed by the cache purger (1.7.12), or a client attempts to access them.

Example configuration:

uwsgi_cache_path /data/nginx/cache keys_zone=cache_zone:10m;

map $request_method $purge_method {
PURGE 1;

Nginx, Inc. p.378 of 563

https://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

default 0;
}

server {
...
location / {

uwsgi_pass backend;
uwsgi_cache cache_zone;
uwsgi_cache_key $uri;
uwsgi_cache_purge $purge_method;

}
}

This functionality is available as part of our commercial subscription.

uwsgi cache revalidate

Syntax: uwsgi_cache_revalidate on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.7.

Enables revalidation of expired cache items using conditional requests with
the If-Modified-Since and If-None-Match header fields.

uwsgi cache use stale

Syntax: uwsgi_cache_use_stale error | timeout | invalid_header |
updating | http_500 | http_503 | http_403 | http_404 |
http_429 | off . . . ;

Default off

Context: http, server, location

Determines in which cases a stale cached response can be used when an
error occurs during communication with the uwsgi server. The directive’s
parameters match the parameters of the uwsgi next upstream directive.

The error parameter also permits using a stale cached response if a uwsgi
server to process a request cannot be selected.

Additionally, the updating parameter permits using a stale cached
response if it is currently being updated. This allows minimizing the number
of accesses to uwsgi servers when updating cached data.

Using a stale cached response can also be enabled directly in the response
header for a specified number of seconds after the response became stale
(1.11.10). This has lower priority than using the directive parameters.

• The “stale-while-revalidate” extension of the Cache-Control header
field permits using a stale cached response if it is currently being updated.

• The “stale-if-error” extension of the Cache-Control header field
permits using a stale cached response in case of an error.

To minimize the number of accesses to uwsgi servers when populating a
new cache element, the uwsgi cache lock directive can be used.

Nginx, Inc. p.379 of 563

https://nginx.com/products/
https://datatracker.ietf.org/doc/html/rfc5861#section-3
https://datatracker.ietf.org/doc/html/rfc5861#section-4

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

uwsgi cache valid

Syntax: uwsgi_cache_valid [code . . .] time;

Default —

Context: http, server, location

Sets caching time for different response codes. For example, the following
directives

uwsgi_cache_valid 200 302 10m;
uwsgi_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute
for responses with code 404.

If only caching time is specified

uwsgi_cache_valid 5m;

then only 200, 301, and 302 responses are cached.
In addition, the any parameter can be specified to cache any responses:

uwsgi_cache_valid 200 302 10m;
uwsgi_cache_valid 301 1h;
uwsgi_cache_valid any 1m;

Parameters of caching can also be set directly in the response header. This
has higher priority than setting of caching time using the directive.

• The X-Accel-Expires header field sets caching time of a response in
seconds. The zero value disables caching for a response. If the value
starts with the @ prefix, it sets an absolute time in seconds since Epoch,
up to which the response may be cached.

• If the header does not include the X-Accel-Expires field, parameters
of caching may be set in the header fields Expires or Cache-Control.

• If the header includes the Set-Cookie field, such a response will not
be cached.

• If the header includes the Vary field with the special value “*”, such a
response will not be cached (1.7.7). If the header includes the Vary field
with another value, such a response will be cached taking into account
the corresponding request header fields (1.7.7).

Processing of one or more of these response header fields can be disabled using
the uwsgi ignore headers directive.

uwsgi connect timeout

Syntax: uwsgi_connect_timeout time;

Default 60s

Context: http, server, location

Nginx, Inc. p.380 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

Defines a timeout for establishing a connection with a uwsgi server. It
should be noted that this timeout cannot usually exceed 75 seconds.

uwsgi force ranges

Syntax: uwsgi_force_ranges on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.7.

Enables byte-range support for both cached and uncached responses from
the uwsgi server regardless of the Accept-Ranges field in these responses.

uwsgi hide header

Syntax: uwsgi_hide_header field;

Default —

Context: http, server, location

By default, nginx does not pass the header fields Status and
X-Accel-... from the response of a uwsgi server to a client. The uwsgi_-
hide_header directive sets additional fields that will not be passed. If, on
the contrary, the passing of fields needs to be permitted, the uwsgi pass header
directive can be used.

uwsgi ignore client abort

Syntax: uwsgi_ignore_client_abort on | off;

Default off

Context: http, server, location

Determines whether the connection with a uwsgi server should be closed
when a client closes the connection without waiting for a response.

uwsgi ignore headers

Syntax: uwsgi_ignore_headers field . . . ;

Default —

Context: http, server, location

Disables processing of certain response header fields from
the uwsgi server. The following fields can be ignored:
X-Accel-Redirect, X-Accel-Expires, X-Accel-Limit-Rate
(1.1.6), X-Accel-Buffering (1.1.6), X-Accel-Charset (1.1.6),
Expires, Cache-Control, Set-Cookie (0.8.44), and Vary (1.7.7).

If not disabled, processing of these header fields has the following effect:

• X-Accel-Expires, Expires, Cache-Control, Set-Cookie, and
Vary set the parameters of response caching;

• X-Accel-Redirect performs an internal redirect to the specified URI;

Nginx, Inc. p.381 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

• X-Accel-Limit-Rate sets the rate limit for transmission of a
response to a client;

• X-Accel-Buffering enables or disables buffering of a response;

• X-Accel-Charset sets the desired charset of a response.

uwsgi intercept errors

Syntax: uwsgi_intercept_errors on | off;

Default off

Context: http, server, location

Determines whether a uwsgi server responses with codes greater than or
equal to 300 should be passed to a client or be intercepted and redirected to
nginx for processing with the error page directive.

uwsgi limit rate

Syntax: uwsgi_limit_rate rate;

Default 0

Context: http, server, location
This directive appeared in version 1.7.7.

Limits the speed of reading the response from the uwsgi server. The rate is
specified in bytes per second. The zero value disables rate limiting. The limit
is set per a request, and so if nginx simultaneously opens two connections to
the uwsgi server, the overall rate will be twice as much as the specified limit.
The limitation works only if buffering of responses from the uwsgi server is
enabled. Parameter value can contain variables (1.27.0).

uwsgi max temp file size

Syntax: uwsgi_max_temp_file_size size;

Default 1024m

Context: http, server, location

When buffering of responses from the uwsgi server is enabled, and the whole
response does not fit into the buffers set by the uwsgi buffer size and uwsgi -
buffers directives, a part of the response can be saved to a temporary file.
This directive sets the maximum size of the temporary file. The size of data
written to the temporary file at a time is set by the uwsgi temp file write size
directive.

The zero value disables buffering of responses to temporary files.

This restriction does not apply to responses that will be cached or stored
on disk.

Nginx, Inc. p.382 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

uwsgi modifier1

Syntax: uwsgi_modifier1 number;

Default 0

Context: http, server, location

Sets the value of the modifier1 field in the uwsgi packet header.

uwsgi modifier2

Syntax: uwsgi_modifier2 number;

Default 0

Context: http, server, location

Sets the value of the modifier2 field in the uwsgi packet header.

uwsgi next upstream

Syntax: uwsgi_next_upstream error | timeout | invalid_header |
http_500 | http_503 | http_403 | http_404 | http_429 |
non_idempotent | off . . . ;

Default error timeout

Context: http, server, location

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_header
a server returned an empty or invalid response;

http_500
a server returned a response with the code 500;

http_503
a server returned a response with the code 503;

http_403
a server returned a response with the code 403;

http_404
a server returned a response with the code 404;

http_429
a server returned a response with the code 429 (1.11.13);

non_idempotent
normally, requests with a non-idempotent method (POST, LOCK, PATCH)
are not passed to the next server if a request has been sent to an
upstream server (1.9.13); enabling this option explicitly allows retrying
such requests;

Nginx, Inc. p.383 of 563

http://uwsgi-docs.readthedocs.org/en/latest/Protocol.html#uwsgi-packet-header
http://uwsgi-docs.readthedocs.org/en/latest/Protocol.html#uwsgi-packet-header
https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.2

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

off
disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt of
communication with a server. The cases of error, timeout and invalid_-
header are always considered unsuccessful attempts, even if they are not
specified in the directive. The cases of http_500, http_503, and http_-
429 are considered unsuccessful attempts only if they are specified in the
directive. The cases of http_403 and http_404 are never considered
unsuccessful attempts.

Passing a request to the next server can be limited by the number of tries
and by time.

uwsgi next upstream timeout

Syntax: uwsgi_next_upstream_timeout time;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

uwsgi next upstream tries

Syntax: uwsgi_next_upstream_tries number;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

uwsgi no cache

Syntax: uwsgi_no_cache string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be saved to a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be saved:

uwsgi_no_cache $cookie_nocache $arg_nocache$arg_comment;
uwsgi_no_cache $http_pragma $http_authorization;

Can be used along with the uwsgi cache bypass directive.

Nginx, Inc. p.384 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

uwsgi param

Syntax: uwsgi_param parameter value [if_not_empty];

Default —

Context: http, server, location

Sets a parameter that should be passed to the uwsgi server. The value can
contain text, variables, and their combination. These directives are inherited
from the previous configuration level if and only if there are no uwsgi_param
directives defined on the current level.

Standard CGI environment variables should be provided as uwsgi headers,
see the uwsgi_params file provided in the distribution:

location / {
include uwsgi_params;
...

}

If the directive is specified with if_not_empty (1.1.11) then such a
parameter will be passed to the server only if its value is not empty:

uwsgi_param HTTPS $https if_not_empty;

uwsgi pass

Syntax: uwsgi_pass [protocol://]address;

Default —

Context: location, if in location

Sets the protocol and address of a uwsgi server. As a protocol, “uwsgi” or
“suwsgi” (secured uwsgi, uwsgi over SSL) can be specified. The address can
be specified as a domain name or IP address, and a port:

uwsgi_pass localhost:9000;
uwsgi_pass uwsgi://localhost:9000;
uwsgi_pass suwsgi://[2001:db8::1]:9090;

or as a UNIX-domain socket path:

uwsgi_pass unix:/tmp/uwsgi.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

Parameter value can contain variables. In this case, if an address is specified
as a domain name, the name is searched among the described server groups,
and, if not found, is determined using a resolver.

Secured uwsgi protocol is supported since version 1.5.8.

Nginx, Inc. p.385 of 563

https://datatracker.ietf.org/doc/html/rfc3875#section-4.1

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

uwsgi pass header

Syntax: uwsgi_pass_header field;

Default —

Context: http, server, location

Permits passing otherwise disabled header fields from a uwsgi server to a
client.

uwsgi pass request body

Syntax: uwsgi_pass_request_body on | off;

Default on

Context: http, server, location

Indicates whether the original request body is passed to the uwsgi server.
See also the uwsgi pass request headers directive.

uwsgi pass request headers

Syntax: uwsgi_pass_request_headers on | off;

Default on

Context: http, server, location

Indicates whether the header fields of the original request are passed to the
uwsgi server. See also the uwsgi pass request body directive.

uwsgi read timeout

Syntax: uwsgi_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the uwsgi server. The timeout
is set only between two successive read operations, not for the transmission of
the whole response. If the uwsgi server does not transmit anything within this
time, the connection is closed.

uwsgi request buffering

Syntax: uwsgi_request_buffering on | off;

Default on

Context: http, server, location
This directive appeared in version 1.7.11.

Enables or disables buffering of a client request body.
When buffering is enabled, the entire request body is read from the client

before sending the request to a uwsgi server.
When buffering is disabled, the request body is sent to the uwsgi server

immediately as it is received. In this case, the request cannot be passed to the
next server if nginx already started sending the request body.

Nginx, Inc. p.386 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

When HTTP/1.1 chunked transfer encoding is used to send the original
request body, the request body will be buffered regardless of the directive
value.

uwsgi send timeout

Syntax: uwsgi_send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a request to the uwsgi server. The timeout
is set only between two successive write operations, not for the transmission
of the whole request. If the uwsgi server does not receive anything within this
time, the connection is closed.

uwsgi socket keepalive

Syntax: uwsgi_socket_keepalive on | off;

Default off

Context: http, server, location
This directive appeared in version 1.15.6.

Configures the “TCP keepalive” behavior for outgoing connections to a
uwsgi server. By default, the operating system’s settings are in effect for the
socket. If the directive is set to the value “on”, the SO_KEEPALIVE socket
option is turned on for the socket.

uwsgi ssl certificate

Syntax: uwsgi_ssl_certificate file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with the certificate in the PEM format used for
authentication to a secured uwsgi server.

Since version 1.21.0, variables can be used in the file name.

uwsgi ssl certificate key

Syntax: uwsgi_ssl_certificate_key file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with the secret key in the PEM format used for
authentication to a secured uwsgi server.

The value engine:name:id can be specified instead of the file (1.7.9), which
loads a secret key with a specified id from the OpenSSL engine name.

Since version 1.21.0, variables can be used in the file name.

Nginx, Inc. p.387 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

uwsgi ssl ciphers

Syntax: uwsgi_ssl_ciphers ciphers;

Default DEFAULT

Context: http, server, location
This directive appeared in version 1.5.8.

Specifies the enabled ciphers for requests to a secured uwsgi server. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

uwsgi ssl conf command

Syntax: uwsgi_ssl_conf_command name value;

Default —

Context: http, server, location
This directive appeared in version 1.19.4.

Sets arbitrary OpenSSL configuration commands when establishing a
connection with the secured uwsgi server.

The directive is supported when using OpenSSL 1.0.2 or higher.

Several uwsgi_ssl_conf_command directives can be specified on the
same level. These directives are inherited from the previous configuration level
if and only if there are no uwsgi_ssl_conf_command directives defined on
the current level.

Note that configuring OpenSSL directly might result in unexpected
behavior.

uwsgi ssl crl

Syntax: uwsgi_ssl_crl file;

Default —

Context: http, server, location
This directive appeared in version 1.7.0.

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify the certificate of the secured uwsgi server.

uwsgi ssl name

Syntax: uwsgi_ssl_name name;

Default host from uwsgi_pass

Context: http, server, location
This directive appeared in version 1.7.0.

Allows overriding the server name used to verify the certificate of the
secured uwsgi server and to be passed through SNI when establishing a
connection with the secured uwsgi server.

Nginx, Inc. p.388 of 563

https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

By default, the host part from uwsgi pass is used.

uwsgi ssl password file

Syntax: uwsgi_ssl_password_file file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

uwsgi ssl protocols

Syntax: uwsgi_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1]

[TLSv1.2] [TLSv1.3];

Default TLSv1 TLSv1.1 TLSv1.2 TLSv1.3

Context: http, server, location
This directive appeared in version 1.5.8.

Enables the specified protocols for requests to a secured uwsgi server.

The TLSv1.3 parameter is used by default since 1.23.4.

uwsgi ssl server name

Syntax: uwsgi_ssl_server_name on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.0.

Enables or disables passing of the server name through TLS Server Name
Indication extension (SNI, RFC 6066) when establishing a connection with the
secured uwsgi server.

uwsgi ssl session reuse

Syntax: uwsgi_ssl_session_reuse on | off;

Default on

Context: http, server, location
This directive appeared in version 1.5.8.

Determines whether SSL sessions can be reused when working with a
secured uwsgi server. If the errors “SSL3_GET_FINISHED:digest check
failed” appear in the logs, try disabling session reuse.

Nginx, Inc. p.389 of 563

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

uwsgi ssl trusted certificate

Syntax: uwsgi_ssl_trusted_certificate file;

Default —

Context: http, server, location
This directive appeared in version 1.7.0.

Specifies a file with trusted CA certificates in the PEM format used to
verify the certificate of the secured uwsgi server.

uwsgi ssl verify

Syntax: uwsgi_ssl_verify on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.0.

Enables or disables verification of the secured uwsgi server certificate.

uwsgi ssl verify depth

Syntax: uwsgi_ssl_verify_depth number;

Default 1

Context: http, server, location
This directive appeared in version 1.7.0.

Sets the verification depth in the secured uwsgi server certificates chain.

uwsgi store

Syntax: uwsgi_store on | off | string;

Default off

Context: http, server, location

Enables saving of files to a disk. The on parameter saves files with paths
corresponding to the directives alias or root. The off parameter disables
saving of files. In addition, the file name can be set explicitly using the string
with variables:

uwsgi_store /data/www$original_uri;

The modification time of files is set according to the received
Last-Modified response header field. The response is first written to a
temporary file, and then the file is renamed. Starting from version 0.8.9,
temporary files and the persistent store can be put on different file systems.
However, be aware that in this case a file is copied across two file systems
instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by
the uwsgi temp path directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files,
e.g.:

Nginx, Inc. p.390 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

uwsgi_pass backend:9000;
...

uwsgi_store on;
uwsgi_store_access user:rw group:rw all:r;
uwsgi_temp_path /data/temp;

alias /data/www/;
}

uwsgi store access

Syntax: uwsgi_store_access users:permissions . . . ;

Default user:rw

Context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

uwsgi_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user
permissions may be omitted:

uwsgi_store_access group:rw all:r;

uwsgi temp file write size

Syntax: uwsgi_temp_file_write_size size;

Default 8k|16k

Context: http, server, location

Limits the size of data written to a temporary file at a time, when buffering
of responses from the uwsgi server to temporary files is enabled. By default,
size is limited by two buffers set by the uwsgi buffer size and uwsgi buffers
directives. The maximum size of a temporary file is set by the uwsgi max -
temp file size directive.

uwsgi temp path

Syntax: uwsgi_temp_path path [level1 [level2 [level3]]];

Default uwsgi_temp

Context: http, server, location

Nginx, Inc. p.391 of 563

CHAPTER 2. HTTP SERVER MODULES 2.57. MODULE NGX HTTP UWSGI MODULE

Defines a directory for storing temporary files with data received from uwsgi
servers. Up to three-level subdirectory hierarchy can be used underneath the
specified directory. For example, in the following configuration

uwsgi_temp_path /spool/nginx/uwsgi_temp 1 2;

a temporary file might look like this:

/spool/nginx/uwsgi_temp/7/45/00000123457

See also the use_temp_path parameter of the uwsgi cache path
directive.

Nginx, Inc. p.392 of 563

CHAPTER 2. HTTP SERVER MODULES 2.58. MODULE NGX HTTP V2 MODULE

2.58 Module ngx http v2 module

2.58.1 Summary . 393
2.58.2 Known Issues . 393
2.58.3 Example Configuration 393
2.58.4 Directives . 394

http2 . 394
http2 body preread size 394
http2 chunk size . 394
http2 idle timeout . 394
http2 max concurrent pushes 395
http2 max concurrent streams 395
http2 max field size . 395
http2 max header size 395
http2 max requests . 396
http2 push . 396
http2 push preload . 396
http2 recv buffer size . 397
http2 recv timeout . 397

2.58.5 Embedded Variables . 397

2.58.1 Summary

The ngx_http_v2_module module (1.9.5) provides support for HTTP/
2.

This module is not built by default, it should be enabled with the
--with-http_v2_module configuration parameter.

2.58.2 Known Issues

Before version 1.9.14, buffering of a client request body could not
be disabled regardless of proxy request buffering, fastcgi request buffering,
uwsgi request buffering, and scgi request buffering directive values.

Before version 1.19.1, the lingering close mechanism was not used to control
closing HTTP/2 connections.

2.58.3 Example Configuration

server {
listen 443 ssl;

http2 on;

ssl_certificate server.crt;
ssl_certificate_key server.key;

}

Nginx, Inc. p.393 of 563

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540

CHAPTER 2. HTTP SERVER MODULES 2.58. MODULE NGX HTTP V2 MODULE

Note that accepting HTTP/2 connections over TLS requires the
“Application-Layer Protocol Negotiation” (ALPN) TLS extension support,
which is available since OpenSSL version 1.0.2.

Also note that if the ssl prefer server ciphers directive is set to the value
“on”, the ciphers should be configured to comply with RFC 9113, Appendix A
black list and supported by clients.

2.58.4 Directives

http2

Syntax: http2 on | off;

Default off

Context: http, server
This directive appeared in version 1.25.1.

Enables the HTTP/2 protocol.

http2 body preread size

Syntax: http2_body_preread_size size;

Default 64k

Context: http, server
This directive appeared in version 1.11.0.

Sets the size of the buffer per each request in which the request body may
be saved before it is started to be processed.

http2 chunk size

Syntax: http2_chunk_size size;

Default 8k

Context: http, server, location

Sets the maximum size of chunks into which the response body is sliced. A
too low value results in higher overhead. A too high value impairs prioritization
due to HOL blocking.

http2 idle timeout

Syntax: http2_idle_timeout time;

Default 3m

Context: http, server

This directive is obsolete since version 1.19.7. The keepalive timeout
directive should be used instead.

Sets the timeout of inactivity after which the connection is closed.

Nginx, Inc. p.394 of 563

http://www.openssl.org
https://datatracker.ietf.org/doc/html/rfc9113#appendix-A
https://datatracker.ietf.org/doc/html/rfc9113
http://en.wikipedia.org/wiki/Head-of-line_blocking

CHAPTER 2. HTTP SERVER MODULES 2.58. MODULE NGX HTTP V2 MODULE

http2 max concurrent pushes

Syntax: http2_max_concurrent_pushes number;

Default 10

Context: http, server
This directive appeared in version 1.13.9.

This directive is obsolete since version 1.25.1.

Limits the maximum number of concurrent push requests in a connection.

http2 max concurrent streams

Syntax: http2_max_concurrent_streams number;

Default 128

Context: http, server

Sets the maximum number of concurrent HTTP/2 streams in a connection.

http2 max field size

Syntax: http2_max_field_size size;

Default 4k

Context: http, server

This directive is obsolete since version 1.19.7. The large client header -
buffers directive should be used instead.

Limits the maximum size of an HPACK-compressed request header field.
The limit applies equally to both name and value. Note that if Huffman
encoding is applied, the actual size of decompressed name and value strings
may be larger. For most requests, the default limit should be enough.

http2 max header size

Syntax: http2_max_header_size size;

Default 16k

Context: http, server

This directive is obsolete since version 1.19.7. The large client header -
buffers directive should be used instead.

Limits the maximum size of the entire request header list after HPACK
decompression. For most requests, the default limit should be enough.

Nginx, Inc. p.395 of 563

https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/rfc7541

CHAPTER 2. HTTP SERVER MODULES 2.58. MODULE NGX HTTP V2 MODULE

http2 max requests

Syntax: http2_max_requests number;

Default 1000

Context: http, server
This directive appeared in version 1.11.6.

This directive is obsolete since version 1.19.7. The keepalive requests
directive should be used instead.

Sets the maximum number of requests (including push requests) that can
be served through one HTTP/2 connection, after which the next client request
will lead to connection closing and the need of establishing a new connection.

Closing connections periodically is necessary to free per-connection memory
allocations. Therefore, using too high maximum number of requests could
result in excessive memory usage and not recommended.

http2 push

Syntax: http2_push uri | off;

Default off

Context: http, server, location
This directive appeared in version 1.13.9.

This directive is obsolete since version 1.25.1.

Pre-emptively sends (pushes) a request to the specified uri along with the
response to the original request. Only relative URIs with absolute path will
be processed, for example:

http2_push /static/css/main.css;

The uri value can contain variables.
Several http2_push directives can be specified on the same configuration

level. The off parameter cancels the effect of the http2_push directives
inherited from the previous configuration level.

http2 push preload

Syntax: http2_push_preload on | off;

Default off

Context: http, server, location
This directive appeared in version 1.13.9.

This directive is obsolete since version 1.25.1.

Enables automatic conversion of preload links specified in the Link
response header fields into push requests.

Nginx, Inc. p.396 of 563

https://datatracker.ietf.org/doc/html/rfc9113#section-8.4
https://www.w3.org/TR/preload/#server-push-http-2
https://datatracker.ietf.org/doc/html/rfc9113#section-8.4

CHAPTER 2. HTTP SERVER MODULES 2.58. MODULE NGX HTTP V2 MODULE

http2 recv buffer size

Syntax: http2_recv_buffer_size size;

Default 256k

Context: http

Sets the size of the per worker input buffer.

http2 recv timeout

Syntax: http2_recv_timeout time;

Default 30s

Context: http, server

This directive is obsolete since version 1.19.7. The client header timeout
directive should be used instead.

Sets the timeout for expecting more data from the client, after which the
connection is closed.

2.58.5 Embedded Variables

The ngx_http_v2_module module supports the following embedded
variables:

$http2
negotiated protocol identifier: “h2” for HTTP/2 over TLS, “h2c” for
HTTP/2 over cleartext TCP, or an empty string otherwise.

Nginx, Inc. p.397 of 563

CHAPTER 2. HTTP SERVER MODULES 2.59. MODULE NGX HTTP V3 MODULE

2.59 Module ngx http v3 module

2.59.1 Summary . 398
2.59.2 Known Issues . 398
2.59.3 Example Configuration 398
2.59.4 Directives . 399

http3 . 399
http3 hq . 399
http3 max concurrent streams 399
http3 stream buffer size 399
quic active connection id limit 399
quic bpf . 400
quic gso . 400
quic host key . 400
quic retry . 400

2.59.5 Embedded Variables . 400

2.59.1 Summary

The ngx_http_v3_module module (1.25.0) provides experimental
support for HTTP/3.

This module is not built by default, it should be enabled with the
--with-http_v3_module configuration parameter.

An SSL library that provides QUIC support such as BoringSSL, LibreSSL,
or QuicTLS is recommended to build and run this module. Otherwise, when
using the OpenSSL library, OpenSSL compatibility layer will be used that
does not support early data.

2.59.2 Known Issues

The module is experimental, caveat emptor applies.

2.59.3 Example Configuration

http {
log_format quic ’$remote_addr - $remote_user [$time_local] ’

’"$request" $status $body_bytes_sent ’
’"$http_referer" "$http_user_agent" "$http3"’;

access_log logs/access.log quic;

server {
for better compatibility it’s recommended
to use the same port for http/3 and https
listen 8443 quic reuseport;
listen 8443 ssl;

ssl_certificate certs/example.com.crt;
ssl_certificate_key certs/example.com.key;

Nginx, Inc. p.398 of 563

https://datatracker.ietf.org/doc/html/rfc9114
https://nginx.org/en/docs/configure.html#http_v3_module
https://boringssl.googlesource.com/boringssl
https://www.libressl.org
https://github.com/quictls/openssl
https://openssl.org

CHAPTER 2. HTTP SERVER MODULES 2.59. MODULE NGX HTTP V3 MODULE

location / {
used to advertise the availability of HTTP/3
add_header Alt-Svc ’h3=":8443"; ma=86400’;

}
}

}

Note that accepting HTTP/3 connections over TLS requires the TLSv1.3
protocol support, which is available since OpenSSL version 1.1.1.

2.59.4 Directives

http3

Syntax: http3 on | off;

Default on

Context: http, server

Enables HTTP/3 protocol negotiation.

http3 hq

Syntax: http3_hq on | off;

Default off

Context: http, server

Enables HTTP/0.9 protocol negotiation used in QUIC interoperability
tests.

http3 max concurrent streams

Syntax: http3_max_concurrent_streams number;

Default 128

Context: http, server

Sets the maximum number of concurrent HTTP/3 request streams in a
connection.

http3 stream buffer size

Syntax: http3_stream_buffer_size size;

Default 64k

Context: http, server

Sets the size of the buffer used for reading and writing of the QUIC streams.

quic active connection id limit

Syntax: quic_active_connection_id_limit number;

Default 2

Context: http, server

Nginx, Inc. p.399 of 563

http://www.openssl.org
https://datatracker.ietf.org/doc/html/rfc9114
https://github.com/marten-seemann/quic-interop-runner
https://github.com/marten-seemann/quic-interop-runner

CHAPTER 2. HTTP SERVER MODULES 2.59. MODULE NGX HTTP V3 MODULE

Sets the QUIC active_connection_id_limit transport parameter
value. This is the maximum number of client connection IDs which can be
stored on the server.

quic bpf

Syntax: quic_bpf on | off;

Default off

Context: main

Enables routing of QUIC packets using eBPF. When enabled, this allows
supporting QUIC connection migration.

The directive is only supported on Linux 5.7+.

quic gso

Syntax: quic_gso on | off;

Default off

Context: http, server

Enables sending in optimized batch mode using segmentation offloading.

Optimized sending is supported only on Linux featuring UDP_SEGMENT.

quic host key

Syntax: quic_host_key file;

Default —

Context: http, server

Sets a file with the secret key used to encrypt stateless reset and address
validation tokens. By default, a random key is generated on each reload.
Tokens generated with old keys are not accepted.

quic retry

Syntax: quic_retry on | off;

Default off

Context: http, server

Enables the QUIC Address Validation feature. This includes sending a
new token in a Retry packet or a NEW_TOKEN frame and validating a token
received in the Initial packet.

2.59.5 Embedded Variables

The ngx_http_v3_module module supports the following embedded
variables:

Nginx, Inc. p.400 of 563

https://ebpf.io/
https://datatracker.ietf.org/doc/html/rfc9000#name-address-validation

CHAPTER 2. HTTP SERVER MODULES 2.59. MODULE NGX HTTP V3 MODULE

$http3
negotiated protocol identifier: “h3” for HTTP/3 connections, “hq” for
hq connections, or an empty string otherwise.

Nginx, Inc. p.401 of 563

CHAPTER 2. HTTP SERVER MODULES 2.60. MODULE NGX HTTP XSLT MODULE

2.60 Module ngx http xslt module

2.60.1 Summary . 402
2.60.2 Example Configuration 402
2.60.3 Directives . 402

xml entities . 402
xslt last modified . 403
xslt param . 403
xslt string param . 403
xslt stylesheet . 403
xslt types . 404

2.60.1 Summary

The ngx_http_xslt_module (0.7.8+) is a filter that transforms XML
responses using one or more XSLT stylesheets.

This module is not built by default, it should be enabled with the
--with-http_xslt_module configuration parameter.

This module requires the libxml2 and libxslt libraries.

2.60.2 Example Configuration

location / {
xml_entities /site/dtd/entities.dtd;
xslt_stylesheet /site/xslt/one.xslt param=value;
xslt_stylesheet /site/xslt/two.xslt;

}

2.60.3 Directives

xml entities

Syntax: xml_entities path;

Default —

Context: http, server, location

Specifies the DTD file that declares character entities. This file is compiled
at the configuration stage. For technical reasons, the module is unable to
use the external subset declared in the processed XML, so it is ignored and a
specially defined file is used instead. This file should not describe the XML
structure. It is enough to declare just the required character entities, for
example:

<!ENTITY nbsp " ">

Nginx, Inc. p.402 of 563

http://xmlsoft.org
http://xmlsoft.org/XSLT/

CHAPTER 2. HTTP SERVER MODULES 2.60. MODULE NGX HTTP XSLT MODULE

xslt last modified

Syntax: xslt_last_modified on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.1.

Allows preserving the Last-Modified header field from the original
response during XSLT transformations to facilitate response caching.

By default, the header field is removed as contents of the response are
modified during transformations and may contain dynamically generated
elements or parts that are changed independently of the original response.

xslt param

Syntax: xslt_param parameter value;

Default —

Context: http, server, location
This directive appeared in version 1.1.18.

Defines the parameters for XSLT stylesheets. The value is treated as an
XPath expression. The value can contain variables. To pass a string value to
a stylesheet, the xslt string param directive can be used.

There could be several xslt_param directives. These directives are
inherited from the previous configuration level if and only if there are no
xslt_param and xslt string param directives defined on the current level.

xslt string param

Syntax: xslt_string_param parameter value;

Default —

Context: http, server, location
This directive appeared in version 1.1.18.

Defines the string parameters for XSLT stylesheets. XPath expressions in
the value are not interpreted. The value can contain variables.

There could be several xslt_string_param directives. These directives
are inherited from the previous configuration level if and only if there are no
xslt param and xslt_string_param directives defined on the current level.

xslt stylesheet

Syntax: xslt_stylesheet stylesheet [parameter=value . . .];

Default —

Context: location

Defines the XSLT stylesheet and its optional parameters. A stylesheet is
compiled at the configuration stage.

Parameters can either be specified separately, or grouped in a single line
using the “:” delimiter. If a parameter includes the “:” character, it should be

Nginx, Inc. p.403 of 563

CHAPTER 2. HTTP SERVER MODULES 2.60. MODULE NGX HTTP XSLT MODULE

escaped as “%3A”. Also, libxslt requires to enclose parameters that contain
non-alphanumeric characters into single or double quotes, for example:

param1=’http%3A//www.example.com’:param2=value2

The parameters description can contain variables, for example, the whole
line of parameters can be taken from a single variable:

location / {
xslt_stylesheet /site/xslt/one.xslt

$arg_xslt_params
param1=’$value1’:param2=value2
param3=value3;

}

It is possible to specify several stylesheets. They will be applied sequentially
in the specified order.

xslt types

Syntax: xslt_types mime-type . . . ;

Default text/xml

Context: http, server, location

Enables transformations in responses with the specified MIME types in
addition to “text/xml”. The special value “*” matches any MIME type
(0.8.29). If the transformation result is an HTML response, its MIME type is
changed to “text/html”.

Nginx, Inc. p.404 of 563

Chapter 3

Stream server modules

3.1 Module ngx stream core module

3.1.1 Summary . 405
3.1.2 Example Configuration 405
3.1.3 Directives . 406

listen . 406
preread buffer size . 409
preread timeout . 409
proxy protocol timeout 409
resolver . 409
resolver timeout . 410
server . 410
server name . 411
server names hash bucket size 412
server names hash max size 412
stream . 412
tcp nodelay . 413
variables hash bucket size 413
variables hash max size 413

3.1.4 Embedded Variables . 413

3.1.1 Summary

The ngx_stream_core_module module is available since version
1.9.0. This module is not built by default, it should be enabled with the
--with-stream configuration parameter.

3.1.2 Example Configuration

worker_processes auto;

error_log /var/log/nginx/error.log info;

events {

405

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

worker_connections 1024;
}

stream {
upstream backend {

hash $remote_addr consistent;

server backend1.example.com:12345 weight=5;
server 127.0.0.1:12345 max_fails=3 fail_timeout=30s;
server unix:/tmp/backend3;

}

upstream dns {
server 192.168.0.1:53535;
server dns.example.com:53;

}

server {
listen 12345;
proxy_connect_timeout 1s;
proxy_timeout 3s;
proxy_pass backend;

}

server {
listen 127.0.0.1:53 udp reuseport;
proxy_timeout 20s;
proxy_pass dns;

}

server {
listen [::1]:12345;
proxy_pass unix:/tmp/stream.socket;

}
}

3.1.3 Directives

listen

Syntax: listen address:port [default_server] [ssl] [udp]

[proxy_protocol] [setfib=number] [fastopen=number]

[backlog=number] [rcvbuf=size] [sndbuf=size]

[accept_filter=filter] [deferred] [bind] [ipv6only=on|off]

[reuseport] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Default —

Context: server

Sets the address and port for the socket on which the server will accept
connections. It is possible to specify just the port. The address can also be a
hostname, for example:

listen 127.0.0.1:12345;
listen *:12345;
listen 12345; # same as *:12345
listen localhost:12345;

IPv6 addresses are specified in square brackets:

listen [::1]:12345;

Nginx, Inc. p.406 of 563

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

listen [::]:12345;

UNIX-domain sockets are specified with the “unix:” prefix:

listen unix:/var/run/nginx.sock;

Port ranges (1.15.10) are specified with the first and last port separated by
a hyphen:

listen 127.0.0.1:12345-12399;
listen 12345-12399;

The default_server parameter, if present, will cause the server to
become the default server for the specified address:port pair (1.25.5). If none
of the directives have the default_server parameter then the first server
with the address:port pair will be the default server for this pair.

The ssl parameter allows specifying that all connections accepted on this
port should work in SSL mode.

The udp parameter configures a listening socket for working with
datagrams (1.9.13). In order to handle packets from the same address and
port in the same session, the reuseport parameter should also be specified.

The proxy_protocol parameter (1.11.4) allows specifying that all
connections accepted on this port should use the PROXY protocol.

The PROXY protocol version 2 is supported since version 1.13.11.

The listen directive can have several additional parameters specific to
socket-related system calls. These parameters can be specified in any listen
directive, but only once for a given address:port pair.

setfib=number
this parameter (1.25.5) sets the associated routing table, FIB (the
SO_SETFIB option) for the listening socket. This currently works only
on FreeBSD.

fastopen=number
enables “TCP Fast Open” for the listening socket (1.21.0) and limits
the maximum length for the queue of connections that have not yet
completed the three-way handshake.

Do not enable this feature unless the server can handle receiving the
same SYN packet with data more than once.

backlog=number
sets the backlog parameter in the listen call that limits the
maximum length for the queue of pending connections (1.9.2). By
default, backlog is set to -1 on FreeBSD, DragonFly BSD, and macOS,
and to 511 on other platforms.

Nginx, Inc. p.407 of 563

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
http://en.wikipedia.org/wiki/TCP_Fast_Open
https://datatracker.ietf.org/doc/html/rfc7413#section-5.1
https://datatracker.ietf.org/doc/html/rfc7413#section-6.1
https://datatracker.ietf.org/doc/html/rfc7413#section-6.1

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

rcvbuf=size
sets the receive buffer size (the SO_RCVBUF option) for the listening
socket (1.11.13).

sndbuf=size
sets the send buffer size (the SO_SNDBUF option) for the listening socket
(1.11.13).

accept_filter=filter
sets the name of accept filter (the SO_ACCEPTFILTER option) for the
listening socket that filters incoming connections before passing them
to accept (1.25.5). This works only on FreeBSD and NetBSD 5.0+.
Possible values are dataready and httpready.

deferred
instructs to use a deferred accept (the TCP_DEFER_ACCEPT socket
option) on Linux (1.25.5).

bind
this parameter instructs to make a separate bind call for a given
address:port pair. The fact is that if there are several listen directives
with the same port but different addresses, and one of the listen
directives listens on all addresses for the given port (*:port), nginx will
bind only to *:port. It should be noted that the getsockname system
call will be made in this case to determine the address that accepted
the connection. If the setfib, fastopen, backlog, rcvbuf,
sndbuf, accept_filter, deferred, ipv6only, reuseport, or
so_keepalive parameters are used then for a given address:port pair
a separate bind call will always be made.

ipv6only=on|off
this parameter determines (via the IPV6_V6ONLY socket option)
whether an IPv6 socket listening on a wildcard address [::] will
accept only IPv6 connections or both IPv6 and IPv4 connections. This
parameter is turned on by default. It can only be set once on start.

reuseport
this parameter (1.9.1) instructs to create an individual listening socket for
each worker process (using the SO_REUSEPORT socket option on Linux
3.9+ and DragonFly BSD, or SO_REUSEPORT_LB on FreeBSD 12+),
allowing a kernel to distribute incoming connections between worker
processes. This currently works only on Linux 3.9+, DragonFly BSD,
and FreeBSD 12+ (1.15.1).

Inappropriate use of this option may have its security implications.

so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]
this parameter configures the “TCP keepalive” behavior for the listening
socket. If this parameter is omitted then the operating system’s settings
will be in effect for the socket. If it is set to the value “on”, the
SO_KEEPALIVE option is turned on for the socket. If it is set to the
value “off”, the SO_KEEPALIVE option is turned off for the socket.

Nginx, Inc. p.408 of 563

http://man.freebsd.org/accf_data
http://man.freebsd.org/accf_http
http://man7.org/linux/man-pages/man7/socket.7.html

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

Some operating systems support setting of TCP keepalive parameters on
a per-socket basis using the TCP_KEEPIDLE, TCP_KEEPINTVL, and
TCP_KEEPCNT socket options. On such systems (currently, Linux 2.4+,
NetBSD 5+, and FreeBSD 9.0-STABLE), they can be configured using
the keepidle, keepintvl, and keepcnt parameters. One or two parameters
may be omitted, in which case the system default setting for the
corresponding socket option will be in effect. For example,

so_keepalive=30m::10

will set the idle timeout (TCP_KEEPIDLE) to 30 minutes, leave the probe
interval (TCP_KEEPINTVL) at its system default, and set the probes
count (TCP_KEEPCNT) to 10 probes.

Before version 1.25.5, different servers must listen on different address:port
pairs.

preread buffer size

Syntax: preread_buffer_size size;

Default 16k

Context: stream, server
This directive appeared in version 1.11.5.

Specifies a size of the preread buffer.

preread timeout

Syntax: preread_timeout timeout;

Default 30s

Context: stream, server
This directive appeared in version 1.11.5.

Specifies a timeout of the preread phase.

proxy protocol timeout

Syntax: proxy_protocol_timeout timeout;

Default 30s

Context: stream, server
This directive appeared in version 1.11.4.

Specifies a timeout for reading the PROXY protocol header to complete. If
no entire header is transmitted within this time, the connection is closed.

resolver

Syntax: resolver address . . . [valid=time] [ipv4=on|off] [ipv6=on|off]

[status_zone=zone];

Default —

Context: stream, server

Nginx, Inc. p.409 of 563

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

This directive appeared in version 1.11.3.

Configures name servers used to resolve names of upstream servers into
addresses, for example:

resolver 127.0.0.1 [::1]:5353;

The address can be specified as a domain name or IP address, with an
optional port. If port is not specified, the port 53 is used. Name servers are
queried in a round-robin fashion.

By default, nginx will look up both IPv4 and IPv6 addresses while resolving.
If looking up of IPv4 or IPv6 addresses is not desired, the ipv4=off (1.23.1)
or the ipv6=off parameter can be specified.

By default, nginx caches answers using the TTL value of a response. The
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid=30s;

To prevent DNS spoofing, it is recommended configuring DNS servers in
a properly secured trusted local network.

The optional status_zone parameter (1.17.1) enables collection of DNS
server statistics of requests and responses in the specified zone. The parameter
is available as part of our commercial subscription.

Before version 1.11.3, this directive was available as part of our
commercial subscription.

resolver timeout

Syntax: resolver_timeout time;

Default 30s

Context: stream, server
This directive appeared in version 1.11.3.

Sets a timeout for name resolution, for example:

resolver_timeout 5s;

Before version 1.11.3, this directive was available as part of our
commercial subscription.

server

Syntax: server { . . . }
Default —

Context: stream

Nginx, Inc. p.410 of 563

https://nginx.com/products/
https://nginx.com/products/
https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

Sets the configuration for a virtual server. There is no clear separation
between IP-based (based on the IP address) and name-based (based on the TLS
Server Name Indication extension (SNI, RFC 6066)) (1.25.5) virtual servers.
Instead, the listen directives describe all addresses and ports that should accept
connections for the server, and the server name directive lists all server names.

server name

Syntax: server_name name . . . ;

Default ""

Context: server
This directive appeared in version 1.25.5.

Sets names of a virtual server, for example:

server {
server_name example.com www.example.com;

}

The first name becomes the primary server name.
Server names can include an asterisk (“*”) replacing the first or last part

of a name:

server {
server_name example.com *.example.com www.example.*;

}

Such names are called wildcard names.
The first two of the names mentioned above can be combined in one:

server {
server_name .example.com;

}

It is also possible to use regular expressions in server names, preceding the
name with a tilde (“~”):

server {
server_name www.example.com ~^www\d+\.example\.com$;

}

Regular expressions can contain captures that can later be used in other
directives:

server {
server_name ~^(www\.)?(.+)$;

proxy_pass www.$2:12345;
}

Named captures in regular expressions create variables that can later be
used in other directives:

Nginx, Inc. p.411 of 563

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

server {
server_name ~^(www\.)?(?<domain>.+)$;

proxy_pass www.$domain:12345;
}

If the directive’s parameter is set to “$hostname”, the machine’s hostname
is inserted.

During searching for a virtual server by name, if the name matches more
than one of the specified variants, (e.g. both a wildcard name and regular
expression match), the first matching variant will be chosen, in the following
order of priority:

1. the exact name

2. the longest wildcard name starting with an asterisk, e.g.
“*.example.com”

3. the longest wildcard name ending with an asterisk, e.g. “mail.*”

4. the first matching regular expression (in order of appearance in the
configuration file)

server names hash bucket size

Syntax: server_names_hash_bucket_size size;

Default 32|64|128

Context: stream
This directive appeared in version 1.25.5.

Sets the bucket size for the server names hash tables. The default value
depends on the size of the processor’s cache line. The details of setting up
hash tables are provided in a separate document.

server names hash max size

Syntax: server_names_hash_max_size size;

Default 512

Context: stream
This directive appeared in version 1.25.5.

Sets the maximum size of the server names hash tables. The details of
setting up hash tables are provided in a separate document.

stream

Syntax: stream { . . . }
Default —

Context: main

Provides the configuration file context in which the stream server directives
are specified.

Nginx, Inc. p.412 of 563

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

tcp nodelay

Syntax: tcp_nodelay on | off;

Default on

Context: stream, server
This directive appeared in version 1.9.4.

Enables or disables the use of the TCP_NODELAY option. The option is
enabled for both client and proxied server connections.

variables hash bucket size

Syntax: variables_hash_bucket_size size;

Default 64

Context: stream
This directive appeared in version 1.11.2.

Sets the bucket size for the variables hash table. The details of setting up
hash tables are provided in a separate document.

variables hash max size

Syntax: variables_hash_max_size size;

Default 1024

Context: stream
This directive appeared in version 1.11.2.

Sets the maximum size of the variables hash table. The details of setting
up hash tables are provided in a separate document.

3.1.4 Embedded Variables

The ngx_stream_core_module module supports variables since 1.11.2.

$binary remote addr
client address in a binary form, value’s length is always 4 bytes for IPv4
addresses or 16 bytes for IPv6 addresses

$bytes received
number of bytes received from a client (1.11.4)

$bytes sent
number of bytes sent to a client

$connection
connection serial number

$hostname
host name

$msec
current time in seconds with the milliseconds resolution

$nginx version
nginx version

Nginx, Inc. p.413 of 563

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

$pid
PID of the worker process

$protocol
protocol used to communicate with the client: TCP or UDP (1.11.4)

$proxy protocol addr
client address from the PROXY protocol header (1.11.4)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$proxy protocol port
client port from the PROXY protocol header (1.11.4)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$proxy protocol server addr
server address from the PROXY protocol header (1.17.6)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$proxy protocol server port
server port from the PROXY protocol header (1.17.6)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$proxy protocol tlv name
TLV from the PROXY Protocol header (1.23.2). The name can be a
TLV type name or its numeric value. In the latter case, the value is
hexadecimal and should be prefixed with 0x:

$proxy_protocol_tlv_alpn
$proxy_protocol_tlv_0x01

SSL TLVs can also be accessed by TLV type name or its numeric value,
both prefixed by ssl_:

$proxy_protocol_tlv_ssl_version
$proxy_protocol_tlv_ssl_0x21

The following TLV type names are supported:

• alpn (0x01) - upper layer protocol used over the connection

• authority (0x02) - host name value passed by the client

• unique_id (0x05) - unique connection id

• netns (0x30) - name of the namespace

• ssl (0x20) - binary SSL TLV structure

The following SSL TLV type names are supported:

• ssl_version (0x21) - SSL version used in client connection

• ssl_cn (0x22) - SSL certificate Common Name

• ssl_cipher (0x23) - name of the used cipher

Nginx, Inc. p.414 of 563

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

• ssl_sig_alg (0x24) - algorithm used to sign the certificate

• ssl_key_alg (0x25) - public-key algorithm

Also, the following special SSL TLV type name is supported:

• ssl_verify - client SSL certificate verification result, zero if the
client presented a certificate and it was successfully verified, and
non-zero otherwise

The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$remote addr
client address

$remote port
client port

$server addr
an address of the server which accepted a connection
Computing a value of this variable usually requires one system call. To
avoid a system call, the listen directives must specify addresses and use
the bind parameter.

$server port
port of the server which accepted a connection

$session time
session duration in seconds with a milliseconds resolution (1.11.4);

$status
session status (1.11.4), can be one of the following:

200
session completed successfully

400
client data could not be parsed, for example, the PROXY protocol
header

403
access forbidden, for example, when access is limited for certain
client addresses

500
internal server error

502
bad gateway, for example, if an upstream server could not be
selected or reached.

503
service unavailable, for example, when access is limited by the
number of connections

$time iso8601
local time in the ISO 8601 standard format

$time local
local time in the Common Log Format

Nginx, Inc. p.415 of 563

CHAPTER 3. STREAM SERVER MODULES 3.2. MODULE NGX STREAM ACCESS MODULE

3.2 Module ngx stream access module

3.2.1 Summary . 416
3.2.2 Example Configuration 416
3.2.3 Directives . 416

allow . 416
deny . 416

3.2.1 Summary

The ngx_stream_access_module module (1.9.2) allows limiting
access to certain client addresses.

3.2.2 Example Configuration

server {
...
deny 192.168.1.1;
allow 192.168.1.0/24;
allow 10.1.1.0/16;
allow 2001:0db8::/32;
deny all;

}

The rules are checked in sequence until the first match is found. In
this example, access is allowed only for IPv4 networks 10.1.1.0/16 and
192.168.1.0/24 excluding the address 192.168.1.1, and for IPv6
network 2001:0db8::/32.

3.2.3 Directives

allow

Syntax: allow address | CIDR | unix: | all;

Default —

Context: stream, server

Allows access for the specified network or address. If the special value
unix: is specified, allows access for all UNIX-domain sockets.

deny

Syntax: deny address | CIDR | unix: | all;

Default —

Context: stream, server

Denies access for the specified network or address. If the special value
unix: is specified, denies access for all UNIX-domain sockets.

Nginx, Inc. p.416 of 563

CHAPTER 3. STREAM SERVER MODULES 3.3. MODULE NGX STREAM GEO MODULE

3.3 Module ngx stream geo module

3.3.1 Summary . 417
3.3.2 Example Configuration 417
3.3.3 Directives . 417

geo . 417

3.3.1 Summary

The ngx_stream_geo_module module (1.11.3) creates variables with
values depending on the client IP address.

3.3.2 Example Configuration

geo $geo {
default 0;

127.0.0.1 2;
192.168.1.0/24 1;
10.1.0.0/16 1;

::1 2;
2001:0db8::/32 1;

}

3.3.3 Directives

geo

Syntax: geo [$address] $variable { . . . }
Default —

Context: stream

Describes the dependency of values of the specified variable on the client
IP address. By default, the address is taken from the $remote addr variable,
but it can also be taken from another variable, for example:

geo $arg_remote_addr $geo {
...;

}

Since variables are evaluated only when used, the mere existence of even
a large number of declared “geo” variables does not cause any extra costs for
connection processing.

If the value of a variable does not represent a valid IP address then the
“255.255.255.255” address is used.

Addresses are specified either as prefixes in CIDR notation (including
individual addresses) or as ranges.

The following special parameters are also supported:

Nginx, Inc. p.417 of 563

CHAPTER 3. STREAM SERVER MODULES 3.3. MODULE NGX STREAM GEO MODULE

delete
deletes the specified network.

default
a value set to the variable if the client address does not match any of
the specified addresses. When addresses are specified in CIDR notation,
“0.0.0.0/0” and “::/0” can be used instead of default. When
default is not specified, the default value will be an empty string.

include
includes a file with addresses and values. There can be several inclusions.

ranges
indicates that addresses are specified as ranges. This parameter should
be the first. To speed up loading of a geo base, addresses should be put
in ascending order.

Example:

geo $country {
default ZZ;
include conf/geo.conf;
delete 127.0.0.0/16;

127.0.0.0/24 US;
127.0.0.1/32 RU;
10.1.0.0/16 RU;
192.168.1.0/24 UK;

}

The conf/geo.conf file could contain the following lines:

10.2.0.0/16 RU;
192.168.2.0/24 RU;

A value of the most specific match is used. For example, for the 127.0.0.1
address the value “RU” will be chosen, not “US”.

Example with ranges:

geo $country {
ranges;
default ZZ;
127.0.0.0-127.0.0.0 US;
127.0.0.1-127.0.0.1 RU;
127.0.0.1-127.0.0.255 US;
10.1.0.0-10.1.255.255 RU;
192.168.1.0-192.168.1.255 UK;

}

Nginx, Inc. p.418 of 563

CHAPTER 3. STREAM SERVER MODULES 3.4. MODULE NGX STREAM GEOIP MODULE

3.4 Module ngx stream geoip module

3.4.1 Summary . 419
3.4.2 Example Configuration 419
3.4.3 Directives . 419

geoip country . 419
geoip city . 420
geoip org . 421

3.4.1 Summary

The ngx_stream_geoip_module module (1.11.3) creates variables
with values depending on the client IP address, using the precompiled
MaxMind databases.

When using the databases with IPv6 support, IPv4 addresses are looked
up as IPv4-mapped IPv6 addresses.

This module is not built by default, it should be enabled with the
--with-stream_geoip_module configuration parameter.

This module requires the MaxMind GeoIP library.

3.4.2 Example Configuration

stream {
geoip_country GeoIP.dat;
geoip_city GeoLiteCity.dat;

map $geoip_city_continent_code $nearest_server {
default example.com;
EU eu.example.com;
NA na.example.com;
AS as.example.com;

}
...

}

3.4.3 Directives

geoip country

Syntax: geoip_country file;

Default —

Context: stream

Specifies a database used to determine the country depending on the client
IP address. The following variables are available when using this database:

$geoip country code
two-letter country code, for example, “RU”, “US”.

Nginx, Inc. p.419 of 563

http://www.maxmind.com
http://www.maxmind.com/app/c

CHAPTER 3. STREAM SERVER MODULES 3.4. MODULE NGX STREAM GEOIP MODULE

$geoip country code3
three-letter country code, for example, “RUS”, “USA”.

$geoip country name
country name, for example, “Russian Federation”, “United
States”.

geoip city

Syntax: geoip_city file;

Default —

Context: stream

Specifies a database used to determine the country, region, and city
depending on the client IP address. The following variables are available when
using this database:

$geoip area code
telephone area code (US only).

This variable may contain outdated information since the corresponding
database field is deprecated.

$geoip city continent code
two-letter continent code, for example, “EU”, “NA”.

$geoip city country code
two-letter country code, for example, “RU”, “US”.

$geoip city country code3
three-letter country code, for example, “RUS”, “USA”.

$geoip city country name
country name, for example, “Russian Federation”, “United
States”.

$geoip dma code
DMA region code in US (also known as “metro code”), according to the
geotargeting in Google AdWords API.

$geoip latitude
latitude.

$geoip longitude
longitude.

$geoip region
two-symbol country region code (region, territory, state, province, federal
land and the like), for example, “48”, “DC”.

$geoip region name
country region name (region, territory, state, province, federal land and
the like), for example, “Moscow City”, “District of Columbia”.

$geoip city
city name, for example, “Moscow”, “Washington”.

$geoip postal code
postal code.

Nginx, Inc. p.420 of 563

https://developers.google.com/adwords/api/docs/appendix/cities-DMAregions

CHAPTER 3. STREAM SERVER MODULES 3.4. MODULE NGX STREAM GEOIP MODULE

geoip org

Syntax: geoip_org file;

Default —

Context: stream

Specifies a database used to determine the organization depending on the
client IP address. The following variable is available when using this database:

$geoip org
organization name, for example, “The University of Melbourne”.

Nginx, Inc. p.421 of 563

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM JS MODULE

3.5 Module ngx stream js module

3.5.1 Summary . 422
3.5.2 Example Configuration 422
3.5.3 Directives . 424

js access . 424
js context reuse . 424
js engine . 424
js fetch buffer size . 425
js fetch ciphers . 425
js fetch max response buffer size 425
js fetch protocols . 425
js fetch timeout . 425
js fetch trusted certificate 426
js fetch verify . 426
js fetch verify depth . 426
js filter . 426
js import . 427
js include . 427
js path . 427
js periodic . 428
js preload object . 428
js preread . 429
js set . 429
js shared dict zone . 430
js var . 431

3.5.4 Session Object Properties 431

3.5.1 Summary

The ngx_stream_js_module module is used to implement handlers in
njs — a subset of the JavaScript language.

Download and install instructions are available here.

3.5.2 Example Configuration

The example works since 0.4.0.

stream {
js_import stream.js;

js_set $bar stream.bar;
js_set $req_line stream.req_line;

server {
listen 12345;

js_preread stream.preread;
return $req_line;

}

Nginx, Inc. p.422 of 563

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM JS MODULE

server {
listen 12346;

js_access stream.access;
proxy_pass 127.0.0.1:8000;
js_filter stream.header_inject;

}
}

http {
server {

listen 8000;
location / {

return 200 $http_foo\n;
}

}
}

The stream.js file:

var line = ’’;

function bar(s) {
var v = s.variables;
s.log("hello from bar() handler!");
return "bar-var" + v.remote_port + "; pid=" + v.pid;

}

function preread(s) {
s.on(’upload’, function (data, flags) {

var n = data.indexOf(’\n’);
if (n != -1) {

line = data.substr(0, n);
s.done();

}
});

}

function req_line(s) {
return line;

}

// Read HTTP request line.
// Collect bytes in ’req’ until
// request line is read.
// Injects HTTP header into a client’s request

var my_header = ’Foo: foo’;
function header_inject(s) {

var req = ’’;
s.on(’upload’, function(data, flags) {

req += data;
var n = req.search(’\n’);
if (n != -1) {

var rest = req.substr(n + 1);
req = req.substr(0, n + 1);
s.send(req + my_header + ’\r\n’ + rest, flags);
s.off(’upload’);

}
});

}

function access(s) {
if (s.remoteAddress.match(’^192.*’)) {

s.deny();
return;

}

s.allow();

Nginx, Inc. p.423 of 563

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM JS MODULE

}

export default {bar, preread, req_line, header_inject, access};

3.5.3 Directives

js access

Syntax: js_access function | module.function;

Default —

Context: stream, server

Sets an njs function which will be called at the access phase. Since 0.4.0, a
module function can be referenced.

The function is called once at the moment when the stream session reaches
the access phase for the first time. The function is called with the following
arguments:

s
the Stream Session object

At this phase, it is possible to perform initialization or register a callback
with the s.on() method for each incoming data chunk until one of the
following methods are called: s.allow(), s.decline(), s.done(). As
soon as one of these methods is called, the stream session processing switches
to the next phase and all current s.on() callbacks are dropped.

js context reuse

Syntax: js_context_reuse number;

Default 128

Context: stream, server
This directive appeared in version 0.8.6.

Sets a maximum number of JS context to be reused for QuickJS engine.
Each context is used for a single stream session. The finished context is put
into a pool of reusable contexts. If the pool is full, the context is destroyed.

js engine

Syntax: js_engine njs | qjs;

Default njs

Context: stream, server
This directive appeared in version 0.8.6.

Sets a JavaScript engine to be used for njs scripts. The njs parameter
sets the njs engine, also used by default. The qjs parameter sets the QuickJS
engine.

Nginx, Inc. p.424 of 563

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM JS MODULE

js fetch buffer size

Syntax: js_fetch_buffer_size size;

Default 16k

Context: stream, server
This directive appeared in version 0.7.4.

Sets the size of the buffer used for reading and writing with Fetch API.

js fetch ciphers

Syntax: js_fetch_ciphers ciphers;

Default HIGH:!aNULL:!MD5

Context: stream, server
This directive appeared in version 0.7.0.

Specifies the enabled ciphers for HTTPS connections with Fetch API. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

js fetch max response buffer size

Syntax: js_fetch_max_response_buffer_size size;

Default 1m

Context: stream, server
This directive appeared in version 0.7.4.

Sets the maximum size of the response received with Fetch API.

js fetch protocols

Syntax: js_fetch_protocols [TLSv1] [TLSv1.1] [TLSv1.2] [TLSv1.3];

Default TLSv1 TLSv1.1 TLSv1.2

Context: stream, server
This directive appeared in version 0.7.0.

Enables the specified protocols for HTTPS connections with Fetch API.

js fetch timeout

Syntax: js_fetch_timeout time;

Default 60s

Context: stream, server
This directive appeared in version 0.7.4.

Defines a timeout for reading and writing for Fetch API. The timeout is set
only between two successive read/write operations, not for the whole response.
If no data is transmitted within this time, the connection is closed.

Nginx, Inc. p.425 of 563

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM JS MODULE

js fetch trusted certificate

Syntax: js_fetch_trusted_certificate file;

Default —

Context: stream, server
This directive appeared in version 0.7.0.

Specifies a file with trusted CA certificates in the PEM format used to
verify the HTTPS certificate with Fetch API.

js fetch verify

Syntax: js_fetch_verify on | off;

Default on

Context: stream, server
This directive appeared in version 0.7.4.

Enables or disables verification of the HTTPS server certificate with Fetch
API.

js fetch verify depth

Syntax: js_fetch_verify_depth number;

Default 100

Context: stream, server
This directive appeared in version 0.7.0.

Sets the verification depth in the HTTPS server certificates chain with
Fetch API.

js filter

Syntax: js_filter function | module.function;

Default —

Context: stream, server

Sets a data filter. Since 0.4.0, a module function can be referenced. The
filter function is called once at the moment when the stream session reaches
the content phase.

The filter function is called with the following arguments:

s
the Stream Session object

At this phase, it is possible to perform initialization or register a callback
with the s.on() method for each incoming data chunk. The s.off()
method may be used to unregister a callback and stop filtering.

As the js_filter handler returns its result immediately, it supports
only synchronous operations. Thus, asynchronous operations such as
ngx.fetch() or setTimeout() are not supported.

Nginx, Inc. p.426 of 563

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM JS MODULE

js import

Syntax: js_import module.js | export name from module.js;

Default —

Context: stream, server
This directive appeared in version 0.4.0.

Imports a module that implements location and variable handlers in njs.
The export_name is used as a namespace to access module functions. If the
export_name is not specified, the module name will be used as a namespace.

js_import stream.js;

Here, the module name stream is used as a namespace while accessing
exports. If the imported module exports foo(), stream.foo is used to
refer to it.

Several js_import directives can be specified.

The directive can be specified on the server level since 0.7.7.

js include

Syntax: js_include file;

Default —

Context: stream

Specifies a file that implements server and variable handlers in njs:

nginx.conf:
js_include stream.js;
js_set $js_addr address;
server {

listen 127.0.0.1:12345;
return $js_addr;

}

stream.js:
function address(s) {

return s.remoteAddress;
}

The directive was made obsolete in version 0.4.0 and was removed in version
0.7.1. The js import directive should be used instead.

js path

Syntax: js_path path;

Default —

Context: stream, server
This directive appeared in version 0.3.0.

Sets an additional path for njs modules.

Nginx, Inc. p.427 of 563

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM JS MODULE

The directive can be specified on the server level since 0.7.7.

js periodic

Syntax: js_periodic function | module.function [interval=time]

[jitter=number] [worker_affinity=mask];

Default —

Context: server
This directive appeared in version 0.8.1.

Specifies a content handler to run at regular interval. The handler receives
a session object as its first argument, it also has access to global objects such
as ngx.

The optional interval parameter sets the interval between two
consecutive runs, by default, 5 seconds.

The optional jitter parameter sets the time within which the location
content handler will be randomly delayed, by default, there is no delay.

By default, the js_handler is executed on worker process 0. The optional
worker_affinity parameter allows specifying particular worker processes
where the location content handler should be executed. Each worker process
set is represented by a bitmask of allowed worker processes. The all mask
allows the handler to be executed in all worker processes.

Example:

example.conf:

location @periodics {
to be run at 1 minute intervals in worker process 0
js_periodic main.handler interval=60s;

to be run at 1 minute intervals in all worker processes
js_periodic main.handler interval=60s worker_affinity=all;

to be run at 1 minute intervals in worker processes 1 and 3
js_periodic main.handler interval=60s worker_affinity=0101;

resolver 10.0.0.1;
js_fetch_trusted_certificate /path/to/ISRG_Root_X1.pem;

}

example.js:

async function handler(s) {
let reply = await ngx.fetch(’https://nginx.org/en/docs/njs/’);
let body = await reply.text();

ngx.log(ngx.INFO, body);
}

js preload object

Syntax: js_preload_object name.json | name from file.json;

Default —

Context: stream, server

Nginx, Inc. p.428 of 563

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM JS MODULE

This directive appeared in version 0.7.8.

Preloads an immutable object at configure time. The name is used as a
name of the global variable though which the object is available in njs code.
If the name is not specified, the file name will be used instead.

js_preload_object map.json;

Here, the map is used as a name while accessing the preloaded object.
Several js_preload_object directives can be specified.

js preread

Syntax: js_preread function | module.function;

Default —

Context: stream, server

Sets an njs function which will be called at the preread phase. Since 0.4.0,
a module function can be referenced.

The function is called once at the moment when the stream session reaches
the preread phase for the first time. The function is called with the following
arguments:

s
the Stream Session object

At this phase, it is possible to perform initialization or register a callback
with the s.on() method for each incoming data chunk until one of the
following methods are called: s.allow(), s.decline(), s.done().
When one of these methods is called, the stream session switches to the next
phase and all current s.on() callbacks are dropped.

As the js_preread handler returns its result immediately, it supports
only synchronous callbacks. Thus, asynchronous callbacks such as
ngx.fetch() or setTimeout() are not supported. Nevertheless,
asynchronous operations are supported in s.on() callbacks in the preread
phase. See this example for more information.

js set

Syntax: js_set $variable function | module.function [nocache];

Default —

Context: stream, server

Sets an njs function for the specified variable. Since 0.4.0, a module
function can be referenced.

The function is called when the variable is referenced for the first time for
a given request. The exact moment depends on a phase at which the variable
is referenced. This can be used to perform some logic not related to variable

Nginx, Inc. p.429 of 563

https://github.com/nginx/njs-examples#authorizing-connections-using-ngx-fetch-as-auth-request-stream-auth-request

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM JS MODULE

evaluation. For example, if the variable is referenced only in the log format
directive, its handler will not be executed until the log phase. This handler
can be used to do some cleanup right before the request is freed.

Since 0.8.6, when optional argument nocache is provided the handler
is called every time it is referenced. Due to current limitations of the rewrite
module, when a nocache variable is referenced by the set directive its handler
should always return a fixed-length value.

As the js_set handler returns its result immediately, it supports only
synchronous callbacks. Thus, asynchronous callbacks such as ngx.fetch() or
setTimeout() are not supported.

The directive can be specified on the server level since 0.7.7.

js shared dict zone

Syntax: js_shared_dict_zone zone=name:size [timeout=time]

[type=string|number] [evict];

Default —

Context: stream
This directive appeared in version 0.8.0.

Sets the name and size of the shared memory zone that keeps the key-value
dictionary shared between worker processes.

By default the shared dictionary uses a string as a key and a value. The
optional type parameter allows redefining the value type to number.

The optional timeout parameter sets the time in milliseconds after which
all shared dictionary entries are removed from the zone. If some entries require
a different removal time, it can be set with the timeout argument of the add,
incr, and set methods (0.8.5).

The optional evict parameter removes the oldest key-value pair when the
zone storage is exhausted.

Example:

example.conf:
Creates a 1Mb dictionary with string values,
removes key-value pairs after 60 seconds of inactivity:
js_shared_dict_zone zone=foo:1M timeout=60s;

Creates a 512Kb dictionary with string values,
forcibly removes oldest key-value pairs when the zone is exhausted:
js_shared_dict_zone zone=bar:512K timeout=30s evict;

Creates a 32Kb permanent dictionary with number values:
js_shared_dict_zone zone=num:32k type=number;

example.js:
function get(r) {

r.return(200, ngx.shared.foo.get(r.args.key));
}

function set(r) {
r.return(200, ngx.shared.foo.set(r.args.key, r.args.value));

Nginx, Inc. p.430 of 563

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM JS MODULE

}

function del(r) {
r.return(200, ngx.shared.bar.delete(r.args.key));

}

function increment(r) {
r.return(200, ngx.shared.num.incr(r.args.key, 2));

}

js var

Syntax: js_var $variable [value];

Default —

Context: stream, server
This directive appeared in version 0.5.3.

Declares a writable variable. The value can contain text, variables, and
their combination.

The directive can be specified on the server level since 0.7.7.

3.5.4 Session Object Properties

Each stream njs handler receives one argument, a stream session object.

Nginx, Inc. p.431 of 563

CHAPTER 3. STREAM SERVER MODULES 3.6. MODULE NGX STREAM KEYVAL MODULE

3.6 Module ngx stream keyval module

3.6.1 Summary . 432
3.6.2 Example Configuration 432
3.6.3 Directives . 432

keyval . 432
keyval zone . 433

3.6.1 Summary

The ngx_stream_keyval_module module (1.13.7) creates variables
with values taken from key-value pairs managed by the API or a variable
that can also be set with njs.

This module is available as part of our commercial subscription.

3.6.2 Example Configuration

http {

server {
...
location /api {

api write=on;
}

}
}

stream {

keyval_zone zone=one:32k state=/var/lib/nginx/state/one.keyval;
keyval $ssl_server_name $name zone=one;

server {
listen 12345 ssl;
proxy_pass $name;
ssl_certificate /usr/local/nginx/conf/cert.pem;
ssl_certificate_key /usr/local/nginx/conf/cert.key;

}
}

3.6.3 Directives

keyval

Syntax: keyval key $variable zone=name;

Default —

Context: stream

Creates a new $variable whose value is looked up by the key in the key-
value database. Matching rules are defined by the type parameter of the
keyval_zone directive. The database is stored in a shared memory zone
specified by the zone parameter.

Nginx, Inc. p.432 of 563

https://github.com/nginx/njs-examples/
https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.6. MODULE NGX STREAM KEYVAL MODULE

keyval zone

Syntax: keyval_zone zone=name:size [state=file] [timeout=time]

[type=string|ip|prefix] [sync];

Default —

Context: stream

Sets the name and size of the shared memory zone that keeps the key-value
database. Key-value pairs are managed by the API.

The optional state parameter specifies a file that keeps the current state
of the key-value database in the JSON format and makes it persistent across
nginx restarts. Changing the file content directly should be avoided.

Examples:

keyval_zone zone=one:32k state=/var/lib/nginx/state/one.keyval; # path for
Linux

keyval_zone zone=one:32k state=/var/db/nginx/state/one.keyval; # path for
FreeBSD

The optional timeout parameter (1.15.0) sets the time after which key-
value pairs are removed from the zone.

The optional type parameter (1.17.1) activates an extra index optimized
for matching the key of a certain type and defines matching rules when
evaluating a keyval $variable.

The index is stored in the same shared memory zone and thus requires
additional storage.

type=string
default, no index is enabled; variable lookup is performed using exact
match of the record key and a search key

type=ip
the search key is the textual representation of IPv4 or IPv6 address or
CIDR range; to match a record key, the search key must belong to a
subnet specified by a record key or exactly match an IP address

type=prefix
variable lookup is performed using prefix match of a record key and a
search key (1.17.5); to match a record key, the record key must be a
prefix of the search key

The optional sync parameter (1.15.0) enables synchronization of the
shared memory zone. The synchronization requires the timeout parameter
to be set.

If the synchronization is enabled, removal of key-value pairs (no matter
one or all) will be performed only on a target cluster node. The same key-
value pairs on other cluster nodes will be removed upon timeout.

Nginx, Inc. p.433 of 563

CHAPTER 3. STREAM SERVER MODULES 3.7. MODULE NGX STREAM LIMIT CONN MODULE

3.7 Module ngx stream limit conn module

3.7.1 Summary . 434
3.7.2 Example Configuration 434
3.7.3 Directives . 434

limit conn . 434
limit conn dry run . 435
limit conn log level . 435
limit conn zone . 435

3.7.4 Embedded Variables . 436

3.7.1 Summary

The ngx_stream_limit_conn_module module (1.9.3) is used to limit
the number of connections per the defined key, in particular, the number of
connections from a single IP address.

3.7.2 Example Configuration

stream {
limit_conn_zone $binary_remote_addr zone=addr:10m;

...

server {

...

limit_conn addr 1;
limit_conn_log_level error;

}
}

3.7.3 Directives

limit conn

Syntax: limit_conn zone number;

Default —

Context: stream, server

Sets the shared memory zone and the maximum allowed number of
connections for a given key value. When this limit is exceeded, the server
will close the connection. For example, the directives

limit_conn_zone $binary_remote_addr zone=addr:10m;

server {
...
limit_conn addr 1;

}

Nginx, Inc. p.434 of 563

CHAPTER 3. STREAM SERVER MODULES 3.7. MODULE NGX STREAM LIMIT CONN MODULE

allow only one connection per an IP address at a time.
When several limit_conn directives are specified, any configured limit

will apply.
These directives are inherited from the previous configuration level if and

only if there are no limit_conn directives defined on the current level.

limit conn dry run

Syntax: limit_conn_dry_run on | off;

Default off

Context: stream, server
This directive appeared in version 1.17.6.

Enables the dry run mode. In this mode, the number of connections is
not limited, however, in the shared memory zone, the number of excessive
connections is accounted as usual.

limit conn log level

Syntax: limit_conn_log_level info | notice | warn | error;

Default error

Context: stream, server

Sets the desired logging level for cases when the server limits the number
of connections.

limit conn zone

Syntax: limit_conn_zone key zone=name:size;

Default —

Context: stream

Sets parameters for a shared memory zone that will keep states for various
keys. In particular, the state includes the current number of connections. The
key can contain text, variables, and their combinations (1.11.2). Connections
with an empty key value are not accounted. Usage example:

limit_conn_zone $binary_remote_addr zone=addr:10m;

Here, the key is a client IP address set by the $binary_remote_addr
variable. The size of $binary_remote_addr is 4 bytes for IPv4 addresses
or 16 bytes for IPv6 addresses. The stored state always occupies 32 or 64 bytes
on 32-bit platforms and 64 bytes on 64-bit platforms. One megabyte zone can
keep about 32 thousand 32-byte states or about 16 thousand 64-byte states.
If the zone storage is exhausted, the server will close the connection.

Additionally, as part of our commercial subscription, the status
information for each such shared memory zone can be obtained or reset with
the API since 1.17.7.

Nginx, Inc. p.435 of 563

https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.7. MODULE NGX STREAM LIMIT CONN MODULE

3.7.4 Embedded Variables

$limit conn status
keeps the result of limiting the number of connections (1.17.6): PASSED,
REJECTED, or REJECTED_DRY_RUN

Nginx, Inc. p.436 of 563

CHAPTER 3. STREAM SERVER MODULES 3.8. MODULE NGX STREAM LOG MODULE

3.8 Module ngx stream log module

3.8.1 Summary . 437
3.8.2 Example Configuration 437
3.8.3 Directives . 437

access log . 437
log format . 438
open log file cache . 439

3.8.1 Summary

The ngx_stream_log_module module (1.11.4) writes session logs in
the specified format.

3.8.2 Example Configuration

log_format basic ’$remote_addr [$time_local] ’
’$protocol $status $bytes_sent $bytes_received ’
’$session_time’;

access_log /spool/logs/nginx-access.log basic buffer=32k;

3.8.3 Directives

access log

Syntax: access_log path format [buffer=size] [gzip[=level]]

[flush=time] [if=condition];

Syntax: access_log off;

Default off

Context: stream, server

Sets the path, format, and configuration for a buffered log write. Several
logs can be specified on the same configuration level. Logging to syslog can
be configured by specifying the “syslog:” prefix in the first parameter. The
special value off cancels all access_log directives on the current level.

If either the buffer or gzip parameter is used, writes to log will be
buffered.

The buffer size must not exceed the size of an atomic write to a disk file.
For FreeBSD this size is unlimited.

When buffering is enabled, the data will be written to the file:

• if the next log line does not fit into the buffer;

• if the buffered data is older than specified by the flush parameter;

• when a worker process is re-opening log files or is shutting down.

Nginx, Inc. p.437 of 563

https://nginx.org/en/docs/control.html

CHAPTER 3. STREAM SERVER MODULES 3.8. MODULE NGX STREAM LOG MODULE

If the gzip parameter is used, then the buffered data will be compressed
before writing to the file. The compression level can be set between 1 (fastest,
less compression) and 9 (slowest, best compression). By default, the buffer
size is equal to 64K bytes, and the compression level is set to 1. Since the data
is compressed in atomic blocks, the log file can be decompressed or read by
“zcat” at any time.

Example:

access_log /path/to/log.gz basic gzip flush=5m;

For gzip compression to work, nginx must be built with the zlib library.

The file path can contain variables, but such logs have some constraints:

• the user whose credentials are used by worker processes should have
permissions to create files in a directory with such logs;

• buffered writes do not work;

• the file is opened and closed for each log write. However, since the
descriptors of frequently used files can be stored in a cache, writing to
the old file can continue during the time specified by the open log file -
cache directive’s valid parameter

The if parameter enables conditional logging. A session will not be logged
if the condition evaluates to “0” or an empty string.

log format

Syntax: log_format name [escape=default|json|none] string . . . ;

Default —

Context: stream

Specifies the log format, for example:

log_format proxy ’$remote_addr [$time_local] ’
’$protocol $status $bytes_sent $bytes_received ’
’$session_time "$upstream_addr" ’
’"$upstream_bytes_sent" "$upstream_bytes_received" "

$upstream_connect_time"’;

The escape parameter (1.11.8) allows setting json or default
characters escaping in variables, by default, default escaping is used. The
none parameter (1.13.10) disables escaping.

For default escaping, characters “"”, “\”, and other characters with
values less than 32 or above 126 are escaped as “\xXX”. If the variable value
is not found, a hyphen (“-”) will be logged.

For json escaping, all characters not allowed in JSON strings will be
escaped: characters “"” and “\” are escaped as “\"” and “\\”, characters with
values less than 32 are escaped as “\n”, “\r”, “\t”, “\b”, “\f”, or “\u00XX”.

Nginx, Inc. p.438 of 563

https://datatracker.ietf.org/doc/html/rfc8259#section-7

CHAPTER 3. STREAM SERVER MODULES 3.8. MODULE NGX STREAM LOG MODULE

open log file cache

Syntax: open_log_file_cache max=N [inactive=time] [min_uses=N]

[valid=time];

Syntax: open_log_file_cache off;

Default off

Context: stream, server

Defines a cache that stores the file descriptors of frequently used logs whose
names contain variables. The directive has the following parameters:

max
sets the maximum number of descriptors in a cache; if the cache becomes
full the least recently used (LRU) descriptors are closed

inactive
sets the time after which the cached descriptor is closed if there were no
access during this time; by default, 10 seconds

min_uses
sets the minimum number of file uses during the time defined by the
inactive parameter to let the descriptor stay open in a cache; by
default, 1

valid
sets the time after which it should be checked that the file still exists
with the same name; by default, 60 seconds

off
disables caching

Usage example:

open_log_file_cache max=1000 inactive=20s valid=1m min_uses=2;

Nginx, Inc. p.439 of 563

CHAPTER 3. STREAM SERVER MODULES 3.9. MODULE NGX STREAM MAP MODULE

3.9 Module ngx stream map module

3.9.1 Summary . 440
3.9.2 Example Configuration 440
3.9.3 Directives . 440

map . 440
map hash bucket size . 441
map hash max size . 442

3.9.1 Summary

The ngx_stream_map_module module (1.11.2) creates variables whose
values depend on values of other variables.

3.9.2 Example Configuration

map $remote_addr $limit {
127.0.0.1 "";
default $binary_remote_addr;

}

limit_conn_zone $limit zone=addr:10m;
limit_conn addr 1;

3.9.3 Directives

map

Syntax: map string $variable { . . . }
Default —

Context: stream

Creates a new variable whose value depends on values of one or more of
the source variables specified in the first parameter.

Since variables are evaluated only when they are used, the mere
declaration even of a large number of “map” variables does not add any extra
costs to connection processing.

Parameters inside the map block specify a mapping between source and
resulting values.

Source values are specified as strings or regular expressions.
Strings are matched ignoring the case.
A regular expression should either start from the “~” symbol for a case-

sensitive matching, or from the “~*” symbols for case-insensitive matching. A
regular expression can contain named and positional captures that can later
be used in other directives along with the resulting variable.

Nginx, Inc. p.440 of 563

CHAPTER 3. STREAM SERVER MODULES 3.9. MODULE NGX STREAM MAP MODULE

If a source value matches one of the names of special parameters described
below, it should be prefixed with the “\” symbol.

The resulting value can contain text, variable, and their combination.
The following special parameters are also supported:

default value
sets the resulting value if the source value matches none of the specified
variants. When default is not specified, the default resulting value
will be an empty string.

hostnames
indicates that source values can be hostnames with a prefix or suffix
mask:

*.example.com 1;
example.* 1;

The following two records

example.com 1;

*.example.com 1;

can be combined:

.example.com 1;

This parameter should be specified before the list of values.

include file
includes a file with values. There can be several inclusions.

volatile
indicates that the variable is not cacheable (1.11.7).

If the source value matches more than one of the specified variants, e.g.
both a mask and a regular expression match, the first matching variant will be
chosen, in the following order of priority:

1. string value without a mask

2. longest string value with a prefix mask, e.g. “*.example.com”

3. longest string value with a suffix mask, e.g. “mail.*”

4. first matching regular expression (in order of appearance in a
configuration file)

5. default value

map hash bucket size

Syntax: map_hash_bucket_size size;

Default 32|64|128

Context: stream

Nginx, Inc. p.441 of 563

CHAPTER 3. STREAM SERVER MODULES 3.9. MODULE NGX STREAM MAP MODULE

Sets the bucket size for the map variables hash tables. Default value
depends on the processor’s cache line size. The details of setting up hash
tables are provided in a separate document.

map hash max size

Syntax: map_hash_max_size size;

Default 2048

Context: stream

Sets the maximum size of the map variables hash tables. The details of
setting up hash tables are provided in a separate document.

Nginx, Inc. p.442 of 563

CHAPTER 3. STREAM SERVER MODULES 3.10. MODULE NGX STREAM MQTT FILTER MODULE

3.10 Module ngx stream mqtt filter module

3.10.1 Summary . 443
3.10.2 Example Configuration 443
3.10.3 Directives . 443

mqtt . 443
mqtt buffers . 443
mqtt rewrite buffer size 444
mqtt set connect . 444

3.10.1 Summary

The ngx_stream_mqtt_filter_module module (1.23.4) provides
support for Message Queuing Telemetry Transport protocol (MQTT) versions
3.1.1 and 5.0.

This module is available as part of our commercial subscription.

3.10.2 Example Configuration

listen 127.0.0.1:18883;
proxy_pass backend;
proxy_buffer_size 16k;

mqtt on;
mqtt_set_connect clientid "$client";
mqtt_set_connect username "$name";

3.10.3 Directives

mqtt

Syntax: mqtt on | off;

Default off

Context: stream, server

Enables the MQTT protocol for the given virtual server.

mqtt buffers

Syntax: mqtt_buffers number size;

Default 100 1k

Context: stream, server
This directive appeared in version 1.25.1.

Sets the number and size of the buffers used for handling MQTT messages,
for a single connection.

Nginx, Inc. p.443 of 563

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.10. MODULE NGX STREAM MQTT FILTER MODULE

mqtt rewrite buffer size

Syntax: mqtt_rewrite_buffer_size size;

Default 4k|8k

Context: server

This directive is obsolete since version 1.25.1. The mqtt buffers directive
should be used instead.

Sets the size of the buffer used for writing a modified message. By default,
the buffer size is equal to one memory page. This is either 4K or 8K, depending
on a platform. It can be made smaller, however.

mqtt set connect

Syntax: mqtt_set_connect field value;

Default —

Context: server

Sets the message field to the given value for CONNECT message. The
following fields are supported: clientid, username, and password. The
value can contain text, variables, and their combination.

Several mqtt_set_connect directives can be specified on the same level:

mqtt_set_connect clientid "$client";
mqtt_set_connect username "$name";

Nginx, Inc. p.444 of 563

CHAPTER 3. STREAM SERVER MODULES 3.11. MODULE NGX STREAM MQTT PREREAD MODULE

3.11 Module ngx stream mqtt preread mod-

ule

3.11.1 Summary . 445
3.11.2 Example Configuration 445
3.11.3 Directives . 445

mqtt preread . 445
3.11.4 Embedded Variables . 445

3.11.1 Summary

The ngx_stream_mqtt_preread_module module (1.23.4) allows
extracting information from the CONNECT message of the Message Queuing
Telemetry Transport protocol (MQTT) versions 3.1.1 and 5.0, for example, a
username or a client ID.

This module is available as part of our commercial subscription.

3.11.2 Example Configuration

mqtt_preread on;
return $mqtt_preread_clientid;

3.11.3 Directives

mqtt preread

Syntax: mqtt_preread on | off;

Default off

Context: stream, server

Enables extracting information from the MQTT CONNECT message at
the preread phase.

3.11.4 Embedded Variables

$mqtt preread clientid
the clientid value from the CONNECT message

$mqtt preread username
the username value from the CONNECT message

Nginx, Inc. p.445 of 563

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.12. MODULE NGX STREAM PASS MODULE

3.12 Module ngx stream pass module

3.12.1 Summary . 446
3.12.2 Example Configuration 446
3.12.3 Directives . 446

pass . 446

3.12.1 Summary

The ngx_stream_pass_module module (1.25.5) allows passing the
accepted connection directly to any configured listening socket in http,
stream, mail, and other similar modules.

3.12.2 Example Configuration

http {
server {

listen 8000;

location / {
root html;

}
}

}

stream {
server {

listen 12345 ssl;

ssl_certificate domain.crt;
ssl_certificate_key domain.key;

pass 127.0.0.1:8000;
}

}

In the example, after terminating SSL/TLS in the stream module the
connection is passed to the http module.

3.12.3 Directives

pass

Syntax: pass address;

Default —

Context: server

Sets server address to pass client connection to. The address can be
specified as an IP address and a port:

pass 127.0.0.1:12345;

or as a UNIX-domain socket path:

Nginx, Inc. p.446 of 563

CHAPTER 3. STREAM SERVER MODULES 3.12. MODULE NGX STREAM PASS MODULE

pass unix:/tmp/stream.socket;

The address can also be specified using variables:

pass $upstream;

Nginx, Inc. p.447 of 563

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM PROXY MODULE

3.13 Module ngx stream proxy module

3.13.1 Summary . 448
3.13.2 Example Configuration 448
3.13.3 Directives . 449

proxy bind . 449
proxy buffer size . 449
proxy connect timeout 450
proxy download rate . 450
proxy half close . 450
proxy next upstream . 450
proxy next upstream timeout 451
proxy next upstream tries 451
proxy pass . 451
proxy protocol . 451
proxy requests . 452
proxy responses . 452
proxy session drop . 452
proxy socket keepalive 453
proxy ssl . 453
proxy ssl certificate . 453
proxy ssl certificate key 453
proxy ssl ciphers . 453
proxy ssl conf command 454
proxy ssl crl . 454
proxy ssl name . 454
proxy ssl password file 454
proxy ssl protocols . 455
proxy ssl server name 455
proxy ssl session reuse 455
proxy ssl trusted certificate 455
proxy ssl verify . 455
proxy ssl verify depth 456
proxy timeout . 456
proxy upload rate . 456

3.13.1 Summary

The ngx_stream_proxy_module module (1.9.0) allows proxying data
streams over TCP, UDP (1.9.13), and UNIX-domain sockets.

3.13.2 Example Configuration

server {
listen 127.0.0.1:12345;
proxy_pass 127.0.0.1:8080;

}

Nginx, Inc. p.448 of 563

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM PROXY MODULE

server {
listen 12345;
proxy_connect_timeout 1s;
proxy_timeout 1m;
proxy_pass example.com:12345;

}

server {
listen 53 udp reuseport;
proxy_timeout 20s;
proxy_pass dns.example.com:53;

}

server {
listen [::1]:12345;
proxy_pass unix:/tmp/stream.socket;

}

3.13.3 Directives

proxy bind

Syntax: proxy_bind address [transparent] | off;

Default —

Context: stream, server
This directive appeared in version 1.9.2.

Makes outgoing connections to a proxied server originate from the specified
local IP address. Parameter value can contain variables (1.11.2). The special
value off cancels the effect of the proxy_bind directive inherited from the
previous configuration level, which allows the system to auto-assign the local
IP address.

The transparent parameter (1.11.0) allows outgoing connections to a
proxied server originate from a non-local IP address, for example, from a real
IP address of a client:

proxy_bind $remote_addr transparent;

In order for this parameter to work, it is usually necessary to run nginx
worker processes with the superuser privileges. On Linux it is not required
(1.13.8) as if the transparent parameter is specified, worker processes
inherit the CAP_NET_RAW capability from the master process. It is also
necessary to configure kernel routing table to intercept network traffic from
the proxied server.

proxy buffer size

Syntax: proxy_buffer_size size;

Default 16k

Context: stream, server
This directive appeared in version 1.9.4.

Nginx, Inc. p.449 of 563

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM PROXY MODULE

Sets the size of the buffer used for reading data from the proxied server.
Also sets the size of the buffer used for reading data from the client.

proxy connect timeout

Syntax: proxy_connect_timeout time;

Default 60s

Context: stream, server

Defines a timeout for establishing a connection with a proxied server.

proxy download rate

Syntax: proxy_download_rate rate;

Default 0

Context: stream, server
This directive appeared in version 1.9.3.

Limits the speed of reading the data from the proxied server. The rate is
specified in bytes per second. The zero value disables rate limiting. The limit
is set per a connection, so if nginx simultaneously opens two connections to
the proxied server, the overall rate will be twice as much as the specified limit.

Parameter value can contain variables (1.17.0). It may be useful in cases
where rate should be limited depending on a certain condition:

map $slow $rate {
1 4k;
2 8k;

}

proxy_download_rate $rate;

proxy half close

Syntax: proxy_half_close on | off;

Default off

Context: stream, server
This directive appeared in version 1.21.4.

Enables or disables closing each direction of a TCP connection
independently (“TCP half-close”). If enabled, proxying over TCP will be kept
until both sides close the connection.

proxy next upstream

Syntax: proxy_next_upstream on | off;

Default on

Context: stream, server

When a connection to the proxied server cannot be established, determines
whether a client connection will be passed to the next server.

Nginx, Inc. p.450 of 563

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM PROXY MODULE

Passing a connection to the next server can be limited by the number of
tries and by time.

proxy next upstream timeout

Syntax: proxy_next_upstream_timeout time;

Default 0

Context: stream, server

Limits the time allowed to pass a connection to the next server. The 0
value turns off this limitation.

proxy next upstream tries

Syntax: proxy_next_upstream_tries number;

Default 0

Context: stream, server

Limits the number of possible tries for passing a connection to the next
server. The 0 value turns off this limitation.

proxy pass

Syntax: proxy_pass address;

Default —

Context: server

Sets the address of a proxied server. The address can be specified as a
domain name or IP address, and a port:

proxy_pass localhost:12345;

or as a UNIX-domain socket path:

proxy_pass unix:/tmp/stream.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

The address can also be specified using variables (1.11.3):

proxy_pass $upstream;

In this case, the server name is searched among the described server groups,
and, if not found, is determined using a resolver.

proxy protocol

Syntax: proxy_protocol on | off;

Default off

Context: stream, server

Nginx, Inc. p.451 of 563

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM PROXY MODULE

This directive appeared in version 1.9.2.

Enables the PROXY protocol for connections to a proxied server.

proxy requests

Syntax: proxy_requests number;

Default 0

Context: stream, server
This directive appeared in version 1.15.7.

Sets the number of client datagrams at which binding between a client and
existing UDP stream session is dropped. After receiving the specified number
of datagrams, next datagram from the same client starts a new session. The
session terminates when all client datagrams are transmitted to a proxied server
and the expected number of responses is received, or when it reaches a timeout.

proxy responses

Syntax: proxy_responses number;

Default —

Context: stream, server
This directive appeared in version 1.9.13.

Sets the number of datagrams expected from the proxied server in response
to a client datagram if the UDP protocol is used. The number serves as a hint
for session termination. By default, the number of datagrams is not limited.

If zero value is specified, no response is expected. However, if a response is
received and the session is still not finished, the response will be handled.

proxy session drop

Syntax: proxy_session_drop on | off;

Default off

Context: stream, server
This directive appeared in version 1.15.8.

Enables terminating all sessions to a proxied server after it was removed
from the group or marked as permanently unavailable. This can occur because
of re-resolve or with the API DELETE command. A server can be marked as
permanently unavailable if it is considered unhealthy or with the API PATCH
command. Each session is terminated when the next read or write event is
processed for the client or proxied server.

This directive is available as part of our commercial subscription.

Nginx, Inc. p.452 of 563

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM PROXY MODULE

proxy socket keepalive

Syntax: proxy_socket_keepalive on | off;

Default off

Context: stream, server
This directive appeared in version 1.15.6.

Configures the “TCP keepalive” behavior for outgoing connections to a
proxied server. By default, the operating system’s settings are in effect for the
socket. If the directive is set to the value “on”, the SO_KEEPALIVE socket
option is turned on for the socket.

proxy ssl

Syntax: proxy_ssl on | off;

Default off

Context: stream, server

Enables the SSL/TLS protocol for connections to a proxied server.

proxy ssl certificate

Syntax: proxy_ssl_certificate file;

Default —

Context: stream, server

Specifies a file with the certificate in the PEM format used for
authentication to a proxied server.

Since version 1.21.0, variables can be used in the file name.

proxy ssl certificate key

Syntax: proxy_ssl_certificate_key file;

Default —

Context: stream, server

Specifies a file with the secret key in the PEM format used for
authentication to a proxied server.

Since version 1.21.0, variables can be used in the file name.

proxy ssl ciphers

Syntax: proxy_ssl_ciphers ciphers;

Default DEFAULT

Context: stream, server

Specifies the enabled ciphers for connections to a proxied server. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

Nginx, Inc. p.453 of 563

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM PROXY MODULE

proxy ssl conf command

Syntax: proxy_ssl_conf_command name value;

Default —

Context: stream, server
This directive appeared in version 1.19.4.

Sets arbitrary OpenSSL configuration commands when establishing a
connection with the proxied server.

The directive is supported when using OpenSSL 1.0.2 or higher.

Several proxy_ssl_conf_command directives can be specified on the
same level. These directives are inherited from the previous configuration level
if and only if there are no proxy_ssl_conf_command directives defined on
the current level.

Note that configuring OpenSSL directly might result in unexpected
behavior.

proxy ssl crl

Syntax: proxy_ssl_crl file;

Default —

Context: stream, server

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify the certificate of the proxied server.

proxy ssl name

Syntax: proxy_ssl_name name;

Default host from proxy_pass

Context: stream, server

Allows overriding the server name used to verify the certificate of the
proxied server and to be passed through SNI when establishing a connection
with the proxied server. The server name can also be specified using variables
(1.11.3).

By default, the host part of the proxy pass address is used.

proxy ssl password file

Syntax: proxy_ssl_password_file file;

Default —

Context: stream, server

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

Nginx, Inc. p.454 of 563

https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM PROXY MODULE

proxy ssl protocols

Syntax: proxy_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1]

[TLSv1.2] [TLSv1.3];

Default TLSv1 TLSv1.1 TLSv1.2 TLSv1.3

Context: stream, server

Enables the specified protocols for connections to a proxied server.

The TLSv1.3 parameter is used by default since 1.23.4.

proxy ssl server name

Syntax: proxy_ssl_server_name on | off;

Default off

Context: stream, server

Enables or disables passing of the server name through TLS Server Name
Indication extension (SNI, RFC 6066) when establishing a connection with the
proxied server.

proxy ssl session reuse

Syntax: proxy_ssl_session_reuse on | off;

Default on

Context: stream, server

Determines whether SSL sessions can be reused when working with
the proxied server. If the errors “SSL3_GET_FINISHED:digest check
failed” appear in the logs, try disabling session reuse.

proxy ssl trusted certificate

Syntax: proxy_ssl_trusted_certificate file;

Default —

Context: stream, server

Specifies a file with trusted CA certificates in the PEM format used to
verify the certificate of the proxied server.

proxy ssl verify

Syntax: proxy_ssl_verify on | off;

Default off

Context: stream, server

Enables or disables verification of the proxied server certificate.

Nginx, Inc. p.455 of 563

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM PROXY MODULE

proxy ssl verify depth

Syntax: proxy_ssl_verify_depth number;

Default 1

Context: stream, server

Sets the verification depth in the proxied server certificates chain.

proxy timeout

Syntax: proxy_timeout timeout;

Default 10m

Context: stream, server

Sets the timeout between two successive read or write operations on client
or proxied server connections. If no data is transmitted within this time, the
connection is closed.

proxy upload rate

Syntax: proxy_upload_rate rate;

Default 0

Context: stream, server
This directive appeared in version 1.9.3.

Limits the speed of reading the data from the client. The rate is specified
in bytes per second. The zero value disables rate limiting. The limit is set per
a connection, so if the client simultaneously opens two connections, the overall
rate will be twice as much as the specified limit.

Parameter value can contain variables (1.17.0). It may be useful in cases
where rate should be limited depending on a certain condition:

map $slow $rate {
1 4k;
2 8k;

}

proxy_upload_rate $rate;

Nginx, Inc. p.456 of 563

CHAPTER 3. STREAM SERVER MODULES 3.14. MODULE NGX STREAM P ... MODULE

3.14 Module ngx stream proxy protocol ven-

dor module

3.14.1 Summary . 457
3.14.2 Example Configuration 457
3.14.3 Embedded Variables . 457

3.14.1 Summary

The ngx_stream_proxy_protocol_vendor_module module
(1.23.3) allows obtaining additional information about a connection in cloud
platforms from application-specific TLVs of the PROXY protocol header.

Supported cloud platforms:

• Amazon Web Services

• Google Cloud Platform

• Microsoft Azure

The PROXY protocol must be previously enabled by setting the proxy_-
protocol parameter in the listen directive.

This module is available as part of our commercial subscription.

3.14.2 Example Configuration

server {
listen 12345 proxy_protocol;
return $proxy_protocol_tlv_gcp_conn_id;

}

3.14.3 Embedded Variables

$proxy protocol tlv aws vpce id
TLV value from the PROXY Protocol header representing the ID of AWS
VPC endpoint

$proxy protocol tlv azure pel id
TLV value from the PROXY Protocol header representing the LinkID of
Azure private endpoint

$proxy protocol tlv gcp conn id
TLV value from the PROXY Protocol header representing Google Cloud
PSC connection ID

Nginx, Inc. p.457 of 563

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://nginx.com/products/
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#proxy-protocol
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#proxy-protocol
https://learn.microsoft.com/en-us/azure/private-link/private-link-service-overview#getting-connection-information-using-tcp-proxy-v2
https://learn.microsoft.com/en-us/azure/private-link/private-link-service-overview#getting-connection-information-using-tcp-proxy-v2
https://cloud.google.com/vpc/docs/configure-private-service-connect-producer#proxy-protocol
https://cloud.google.com/vpc/docs/configure-private-service-connect-producer#proxy-protocol

CHAPTER 3. STREAM SERVER MODULES 3.15. MODULE NGX STREAM REALIP MODULE

3.15 Module ngx stream realip module

3.15.1 Summary . 458
3.15.2 Example Configuration 458
3.15.3 Directives . 458

set real ip from . 458
3.15.4 Embedded Variables . 458

3.15.1 Summary

The ngx_stream_realip_module module is used to change the client
address and port to the ones sent in the PROXY protocol header (1.11.4). The
PROXY protocol must be previously enabled by setting the proxy protocol
parameter in the listen directive.

This module is not built by default, it should be enabled with the
--with-stream_realip_module configuration parameter.

3.15.2 Example Configuration

listen 12345 proxy_protocol;

set_real_ip_from 192.168.1.0/24;
set_real_ip_from 192.168.2.1;
set_real_ip_from 2001:0db8::/32;

3.15.3 Directives

set real ip from

Syntax: set_real_ip_from address | CIDR | unix:;

Default —

Context: stream, server

Defines trusted addresses that are known to send correct replacement
addresses. If the special value unix: is specified, all UNIX-domain sockets
will be trusted.

3.15.4 Embedded Variables

$realip remote addr
keeps the original client address

$realip remote port
keeps the original client port

Nginx, Inc. p.458 of 563

CHAPTER 3. STREAM SERVER MODULES 3.16. MODULE NGX STREAM RETURN MODULE

3.16 Module ngx stream return module

3.16.1 Summary . 459
3.16.2 Example Configuration 459
3.16.3 Directives . 459

return . 459

3.16.1 Summary

The ngx_stream_return_module module (1.11.2) allows sending a
specified value to the client and then closing the connection.

3.16.2 Example Configuration

server {
listen 12345;
return $time_iso8601;

}

3.16.3 Directives

return

Syntax: return value;

Default —

Context: server

Specifies a value to send to the client. The value can contain text, variables,
and their combination.

Nginx, Inc. p.459 of 563

CHAPTER 3. STREAM SERVER MODULES 3.17. MODULE NGX STREAM SET MODULE

3.17 Module ngx stream set module

3.17.1 Summary . 460
3.17.2 Example Configuration 460
3.17.3 Directives . 460

set . 460

3.17.1 Summary

The ngx_stream_set_module module (1.19.3) allows setting a value
for a variable.

3.17.2 Example Configuration

server {
listen 12345;
set $true 1;

}

3.17.3 Directives

set

Syntax: set $variable value;

Default —

Context: server

Sets a value for the specified variable. The value can contain text, variables,
and their combination.

Nginx, Inc. p.460 of 563

CHAPTER 3. STREAM SERVER MODULES 3.18. MODULE NGX STREAM SPLIT CLIENTS MODULE

3.18 Module ngx stream split clients module

3.18.1 Summary . 461
3.18.2 Example Configuration 461
3.18.3 Directives . 461

split clients . 461

3.18.1 Summary

The ngx_stream_split_clients_module module (1.11.3) creates
variables suitable for A/B testing, also known as split testing.

3.18.2 Example Configuration

stream {
...
split_clients "${remote_addr}AAA" $upstream {

0.5% feature_test1;
2.0% feature_test2;

* production;
}

server {
...
proxy_pass $upstream;

}
}

3.18.3 Directives

split clients

Syntax: split_clients string $variable { . . . }
Default —

Context: stream

Creates a variable for A/B testing, for example:

split_clients "${remote_addr}AAA" $variant {
0.5% .one;
2.0% .two;

* "";
}

The value of the original string is hashed using MurmurHash2. In the
example given, hash values from 0 to 21474835 (0.5%) correspond to the value
".one" of the $variant variable, hash values from 21474836 to 107374180
(2%) correspond to the value ".two", and hash values from 107374181 to
4294967295 correspond to the value "" (an empty string).

Nginx, Inc. p.461 of 563

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

3.19 Module ngx stream ssl module

3.19.1 Summary . 462
3.19.2 Example Configuration 462
3.19.3 Directives . 463

ssl alpn . 463
ssl certificate . 463
ssl certificate key . 464
ssl ciphers . 465
ssl client certificate . 465
ssl conf command . 465
ssl crl . 466
ssl dhparam . 466
ssl ecdh curve . 466
ssl handshake timeout 466
ssl ocsp . 467
ssl ocsp cache . 467
ssl ocsp responder . 467
ssl password file . 467
ssl prefer server ciphers 468
ssl protocols . 468
ssl reject handshake . 469
ssl session cache . 469
ssl session ticket key . 470
ssl session tickets . 470
ssl session timeout . 470
ssl stapling . 470
ssl stapling file . 471
ssl stapling responder 471
ssl stapling verify . 471
ssl trusted certificate . 472
ssl verify client . 472
ssl verify depth . 472

3.19.4 Embedded Variables . 472

3.19.1 Summary

The ngx_stream_ssl_module module (1.9.0) provides the necessary
support for a stream proxy server to work with the SSL/TLS protocol.
This module is not built by default, it should be enabled with the
--with-stream_ssl_module configuration parameter.

3.19.2 Example Configuration

To reduce the processor load, it is recommended to

• set the number of worker processes equal to the number of processors,

Nginx, Inc. p.462 of 563

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

• enable the shared session cache,

• disable the built-in session cache,

• and possibly increase the session lifetime (by default, 5 minutes):

worker_processes auto;

stream {

...

server {
listen 12345 ssl;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3;
ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5;
ssl_certificate /usr/local/nginx/conf/cert.pem;
ssl_certificate_key /usr/local/nginx/conf/cert.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

...
}

3.19.3 Directives

ssl alpn

Syntax: ssl_alpn protocol . . . ;

Default —

Context: stream, server
This directive appeared in version 1.21.4.

Specifies the list of supported ALPN protocols. One of the protocols must
be negotiated if the client uses ALPN:

map $ssl_alpn_protocol $proxy {
h2 127.0.0.1:8001;
http/1.1 127.0.0.1:8002;

}

server {
listen 12346;
proxy_pass $proxy;
ssl_alpn h2 http/1.1;

}

ssl certificate

Syntax: ssl_certificate file;

Default —

Context: stream, server

Specifies a file with the certificate in the PEM format for the given server. If
intermediate certificates should be specified in addition to a primary certificate,

Nginx, Inc. p.463 of 563

https://datatracker.ietf.org/doc/html/rfc7301

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

they should be specified in the same file in the following order: the primary
certificate comes first, then the intermediate certificates. A secret key in the
PEM format may be placed in the same file.

Since version 1.11.0, this directive can be specified multiple times to load
certificates of different types, for example, RSA and ECDSA:

server {
listen 12345 ssl;

ssl_certificate example.com.rsa.crt;
ssl_certificate_key example.com.rsa.key;

ssl_certificate example.com.ecdsa.crt;
ssl_certificate_key example.com.ecdsa.key;

...
}

Only OpenSSL 1.0.2 or higher supports separate certificate chains for
different certificates. With older versions, only one certificate chain can be
used.

Since version 1.15.9, variables can be used in the file name when using
OpenSSL 1.0.2 or higher:

ssl_certificate $ssl_server_name.crt;
ssl_certificate_key $ssl_server_name.key;

Note that using variables implies that a certificate will be loaded for each
SSL handshake, and this may have a negative impact on performance.

The value data:$variable can be specified instead of the file (1.15.10),
which loads a certificate from a variable without using intermediate files. Note
that inappropriate use of this syntax may have its security implications, such
as writing secret key data to error log.

ssl certificate key

Syntax: ssl_certificate_key file;

Default —

Context: stream, server

Specifies a file with the secret key in the PEM format for the given server.
The value engine:name:id can be specified instead of the file, which loads

a secret key with a specified id from the OpenSSL engine name.
The value data:$variable can be specified instead of the file (1.15.10),

which loads a secret key from a variable without using intermediate files. Note
that inappropriate use of this syntax may have its security implications, such
as writing secret key data to error log.

Since version 1.15.9, variables can be used in the file name when using
OpenSSL 1.0.2 or higher.

Nginx, Inc. p.464 of 563

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

ssl ciphers

Syntax: ssl_ciphers ciphers;

Default HIGH:!aNULL:!MD5

Context: stream, server

Specifies the enabled ciphers. The ciphers are specified in the format
understood by the OpenSSL library, for example:

ssl_ciphers ALL:!aNULL:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

The full list can be viewed using the “openssl ciphers” command.

ssl client certificate

Syntax: ssl_client_certificate file;

Default —

Context: stream, server
This directive appeared in version 1.11.8.

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates and OCSP responses if ssl stapling is enabled.

The list of certificates will be sent to clients. If this is not desired, the
ssl trusted certificate directive can be used.

ssl conf command

Syntax: ssl_conf_command name value;

Default —

Context: stream, server
This directive appeared in version 1.19.4.

Sets arbitrary OpenSSL configuration commands.

The directive is supported when using OpenSSL 1.0.2 or higher.

Several ssl_conf_command directives can be specified on the same level:

ssl_conf_command Options PrioritizeChaCha;
ssl_conf_command Ciphersuites TLS_CHACHA20_POLY1305_SHA256;

These directives are inherited from the previous configuration level if and
only if there are no ssl_conf_command directives defined on the current
level.

Note that configuring OpenSSL directly might result in unexpected
behavior.

Nginx, Inc. p.465 of 563

https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

ssl crl

Syntax: ssl_crl file;

Default —

Context: stream, server
This directive appeared in version 1.11.8.

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify client certificates.

ssl dhparam

Syntax: ssl_dhparam file;

Default —

Context: stream, server

Specifies a file with DH parameters for DHE ciphers.
By default no parameters are set, and therefore DHE ciphers will not be

used.

Prior to version 1.11.0, builtin parameters were used by default.

ssl ecdh curve

Syntax: ssl_ecdh_curve curve;

Default auto

Context: stream, server

Specifies a curve for ECDHE ciphers.
When using OpenSSL 1.0.2 or higher, it is possible to specify multiple

curves (1.11.0), for example:

ssl_ecdh_curve prime256v1:secp384r1;

The special value auto (1.11.0) instructs nginx to use a list built into the
OpenSSL library when using OpenSSL 1.0.2 or higher, or prime256v1 with
older versions.

Prior to version 1.11.0, the prime256v1 curve was used by default.

When using OpenSSL 1.0.2 or higher, this directive sets the list of curves
supported by the server. Thus, in order for ECDSA certificates to work, it is
important to include the curves used in the certificates.

ssl handshake timeout

Syntax: ssl_handshake_timeout time;

Default 60s

Context: stream, server

Specifies a timeout for the SSL handshake to complete.

Nginx, Inc. p.466 of 563

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

ssl ocsp

Syntax: ssl_ocsp on | off | leaf;

Default off

Context: stream, server
This directive appeared in version 1.27.2.

Enables OCSP validation of the client certificate chain. The leaf
parameter enables validation of the client certificate only.

For the OCSP validation to work, the ssl verify client directive should be
set to on or optional.

To resolve the OCSP responder hostname, the resolver directive should also
be specified.

Example:

ssl_verify_client on;
ssl_ocsp on;
resolver 192.0.2.1;

ssl ocsp cache

Syntax: ssl_ocsp_cache off | [shared:name:size];

Default off

Context: stream, server
This directive appeared in version 1.27.2.

Sets name and size of the cache that stores client certificates status for
OCSP validation. The cache is shared between all worker processes. A cache
with the same name can be used in several virtual servers.

The off parameter prohibits the use of the cache.

ssl ocsp responder

Syntax: ssl_ocsp_responder url;

Default —

Context: stream, server
This directive appeared in version 1.27.2.

Overrides the URL of the OCSP responder specified in the “Authority
Information Access” certificate extension for validation of client certificates.

Only “http://” OCSP responders are supported:

ssl_ocsp_responder http://ocsp.example.com/;

ssl password file

Syntax: ssl_password_file file;

Default —

Context: stream, server

Nginx, Inc. p.467 of 563

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

Example:

stream {
ssl_password_file /etc/keys/global.pass;
...

server {
listen 127.0.0.1:12345;
ssl_certificate_key /etc/keys/first.key;

}

server {
listen 127.0.0.1:12346;

named pipe can also be used instead of a file
ssl_password_file /etc/keys/fifo;
ssl_certificate_key /etc/keys/second.key;

}
}

ssl prefer server ciphers

Syntax: ssl_prefer_server_ciphers on | off;

Default off

Context: stream, server

Specifies that server ciphers should be preferred over client ciphers when
the SSLv3 and TLS protocols are used.

ssl protocols

Syntax: ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2]

[TLSv1.3];

Default TLSv1 TLSv1.1 TLSv1.2 TLSv1.3

Context: stream, server

Enables the specified protocols.
If the directive is specified on the server level, the value from the default

server can be used.

The TLSv1.1 and TLSv1.2 parameters work only when OpenSSL 1.0.1
or higher is used.

The TLSv1.3 parameter (1.13.0) works only when OpenSSL 1.1.1 or
higher is used.

The TLSv1.3 parameter is used by default since 1.23.4.

Nginx, Inc. p.468 of 563

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

ssl reject handshake

Syntax: ssl_reject_handshake on | off;

Default off

Context: stream, server
This directive appeared in version 1.25.5.

If enabled, SSL handshakes in the server block will be rejected.
For example, in the following configuration, SSL handshakes with server

names other than example.com are rejected:

server {
listen 443 ssl default_server;
ssl_reject_handshake on;

}

server {
listen 443 ssl;
server_name example.com;
ssl_certificate example.com.crt;
ssl_certificate_key example.com.key;

}

ssl session cache

Syntax: ssl_session_cache off | none | [builtin[:size]]

[shared:name:size];

Default none

Context: stream, server

Sets the types and sizes of caches that store session parameters. A cache
can be of any of the following types:

off
the use of a session cache is strictly prohibited: nginx explicitly tells a
client that sessions may not be reused.

none
the use of a session cache is gently disallowed: nginx tells a client that
sessions may be reused, but does not actually store session parameters
in the cache.

builtin
a cache built in OpenSSL; used by one worker process only. The cache
size is specified in sessions. If size is not given, it is equal to 20480
sessions. Use of the built-in cache can cause memory fragmentation.

shared
a cache shared between all worker processes. The cache size is specified
in bytes; one megabyte can store about 4000 sessions. Each shared cache
should have an arbitrary name. A cache with the same name can be
used in several servers. It is also used to automatically generate, store,
and periodically rotate TLS session ticket keys (1.23.2) unless configured
explicitly using the ssl session ticket key directive.

Nginx, Inc. p.469 of 563

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin:1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more
efficient.

ssl session ticket key

Syntax: ssl_session_ticket_key file;

Default —

Context: stream, server

Sets a file with the secret key used to encrypt and decrypt TLS session
tickets. The directive is necessary if the same key has to be shared between
multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session
tickets. This allows configuring key rotation, for example:

ssl_session_ticket_key current.key;
ssl_session_ticket_key previous.key;

The file must contain 80 or 48 bytes of random data and can be created
using the following command:

openssl rand 80 > ticket.key

Depending on the file size either AES256 (for 80-byte keys, 1.11.8) or
AES128 (for 48-byte keys) is used for encryption.

ssl session tickets

Syntax: ssl_session_tickets on | off;

Default on

Context: stream, server

Enables or disables session resumption through TLS session tickets.

ssl session timeout

Syntax: ssl_session_timeout time;

Default 5m

Context: stream, server

Specifies a time during which a client may reuse the session parameters.

ssl stapling

Syntax: ssl_stapling on | off;

Default off

Context: stream, server

Nginx, Inc. p.470 of 563

https://datatracker.ietf.org/doc/html/rfc5077

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

This directive appeared in version 1.27.2.

Enables or disables stapling of OCSP responses by the server. Example:

ssl_stapling on;
resolver 192.0.2.1;

For the OCSP stapling to work, the certificate of the server certificate
issuer should be known. If the ssl certificate file does not contain intermediate
certificates, the certificate of the server certificate issuer should be present in
the ssl trusted certificate file.

For a resolution of the OCSP responder hostname, the resolver directive
should also be specified.

ssl stapling file

Syntax: ssl_stapling_file file;

Default —

Context: stream, server
This directive appeared in version 1.27.2.

When set, the stapled OCSP response will be taken from the specified file
instead of querying the OCSP responder specified in the server certificate.

The file should be in the DER format as produced by the“openssl ocsp”
command.

ssl stapling responder

Syntax: ssl_stapling_responder url;

Default —

Context: stream, server
This directive appeared in version 1.27.2.

Overrides the URL of the OCSP responder specified in the “Authority
Information Access” certificate extension.

Only “http://” OCSP responders are supported:

ssl_stapling_responder http://ocsp.example.com/;

ssl stapling verify

Syntax: ssl_stapling_verify on | off;

Default off

Context: stream, server
This directive appeared in version 1.27.2.

Enables or disables verification of OCSP responses by the server.
For verification to work, the certificate of the server certificate issuer, the

root certificate, and all intermediate certificates should be configured as trusted
using the ssl trusted certificate directive.

Nginx, Inc. p.471 of 563

https://datatracker.ietf.org/doc/html/rfc6066#section-8
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.2.1

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

ssl trusted certificate

Syntax: ssl_trusted_certificate file;

Default —

Context: stream, server
This directive appeared in version 1.11.8.

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates and OCSP responses if ssl stapling is enabled.

In contrast to the certificate set by ssl client certificate, the list of these
certificates will not be sent to clients.

ssl verify client

Syntax: ssl_verify_client on | off | optional | optional_no_ca;

Default off

Context: stream, server
This directive appeared in version 1.11.8.

Enables verification of client certificates. The verification result is stored
in the $ssl client verify variable. If an error has occurred during the client
certificate verification or a client has not presented the required certificate, the
connection is closed.

The optional parameter requests the client certificate and verifies it if
the certificate is present.

The optional_no_ca parameter requests the client certificate but does
not require it to be signed by a trusted CA certificate. This is intended for
the use in cases when a service that is external to nginx performs the actual
certificate verification. The contents of the certificate is accessible through the
$ssl client cert variable.

ssl verify depth

Syntax: ssl_verify_depth number;

Default 1

Context: stream, server
This directive appeared in version 1.11.8.

Sets the verification depth in the client certificates chain.

3.19.4 Embedded Variables

The ngx_stream_ssl_module module supports variables since 1.11.2.

$ssl alpn protocol
returns the protocol selected by ALPN during the SSL handshake, or an
empty string otherwise (1.21.4);

$ssl cipher
returns the name of the cipher used for an established SSL connection;

Nginx, Inc. p.472 of 563

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

$ssl ciphers
returns the list of ciphers supported by the client (1.11.7). Known ciphers
are listed by names, unknown are shown in hexadecimal, for example:

AES128-SHA:AES256-SHA:0x00ff

The variable is fully supported only when using OpenSSL version 1.0.2
or higher. With older versions, the variable is available only for new
sessions and lists only known ciphers.

$ssl client cert
returns the client certificate in the PEM format for an established SSL
connection, with each line except the first prepended with the tab
character (1.11.8);

$ssl client fingerprint
returns the SHA1 fingerprint of the client certificate for an established
SSL connection (1.11.8);

$ssl client i dn
returns the “issuer DN” string of the client certificate for an established
SSL connection according to RFC 2253 (1.11.8);

$ssl client raw cert
returns the client certificate in the PEM format for an established SSL
connection (1.11.8);

$ssl client s dn
returns the “subject DN” string of the client certificate for an established
SSL connection according to RFC 2253 (1.11.8);

$ssl client serial
returns the serial number of the client certificate for an established SSL
connection (1.11.8);

$ssl client v end
returns the end date of the client certificate (1.11.8);

$ssl client v remain
returns the number of days until the client certificate expires (1.11.8);

$ssl client v start
returns the start date of the client certificate (1.11.8);

$ssl client verify
returns the result of client certificate verification (1.11.8): “SUCCESS”,
“FAILED:reason”, and “NONE” if a certificate was not present;

$ssl curve
returns the negotiated curve used for SSL handshake key exchange
process (1.21.5). Known curves are listed by names, unknown are shown
in hexadecimal, for example:

prime256v1

Nginx, Inc. p.473 of 563

https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc2253

CHAPTER 3. STREAM SERVER MODULES 3.19. MODULE NGX STREAM SSL MODULE

The variable is supported only when using OpenSSL version 3.0 or
higher. With older versions, the variable value will be an empty string.

$ssl curves
returns the list of curves supported by the client (1.11.7). Known curves
are listed by names, unknown are shown in hexadecimal, for example:

0x001d:prime256v1:secp521r1:secp384r1

The variable is supported only when using OpenSSL version 1.0.2 or
higher. With older versions, the variable value will be an empty string.

The variable is available only for new sessions.

$ssl protocol
returns the protocol of an established SSL connection;

$ssl server name
returns the server name requested through SNI;

$ssl session id
returns the session identifier of an established SSL connection;

$ssl session reused
returns “r” if an SSL session was reused, or “.” otherwise.

Nginx, Inc. p.474 of 563

http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 3. STREAM SERVER MODULES 3.20. MODULE NGX STREAM SSL PREREAD MODULE

3.20 Module ngx stream ssl preread module

3.20.1 Summary . 475
3.20.2 Example Configuration 475
3.20.3 Directives . 476

ssl preread . 476
3.20.4 Embedded Variables . 476

3.20.1 Summary

The ngx_stream_ssl_preread_module module (1.11.5) allows
extracting information from the ClientHello message without terminating
SSL/TLS, for example, the server name requested through SNI or protocols
advertised in ALPN. This module is not built by default, it should be
enabled with the --with-stream_ssl_preread_module configuration
parameter.

3.20.2 Example Configuration

Selecting an upstream based on server name:

map $ssl_preread_server_name $name {
backend.example.com backend;
default backend2;

}

upstream backend {
server 192.168.0.1:12345;
server 192.168.0.2:12345;

}

upstream backend2 {
server 192.168.0.3:12345;
server 192.168.0.4:12345;

}

server {
listen 12346;
proxy_pass $name;
ssl_preread on;

}

Selecting an upstream based on protocol:

map $ssl_preread_alpn_protocols $proxy {
~\bh2\b 127.0.0.1:8001;
~\bhttp/1.1\b 127.0.0.1:8002;
~\bxmpp-client\b 127.0.0.1:8003;

}

server {
listen 9000;
proxy_pass $proxy;
ssl_preread on;

}

Selecting an upstream based on SSL protocol version:

Nginx, Inc. p.475 of 563

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.2
https://datatracker.ietf.org/doc/html/rfc6066#section-3
https://datatracker.ietf.org/doc/html/rfc7301

CHAPTER 3. STREAM SERVER MODULES 3.20. MODULE NGX STREAM SSL PREREAD MODULE

map $ssl_preread_protocol $upstream {
"" ssh.example.com:22;
"TLSv1.2" new.example.com:443;
default tls.example.com:443;

}

ssh and https on the same port
server {

listen 192.168.0.1:443;
proxy_pass $upstream;
ssl_preread on;

}

3.20.3 Directives

ssl preread

Syntax: ssl_preread on | off;

Default off

Context: stream, server

Enables extracting information from the ClientHello message at the preread
phase.

3.20.4 Embedded Variables

$ssl preread protocol
the highest SSL protocol version supported by the client (1.15.2)

$ssl preread server name
server name requested through SNI

$ssl preread alpn protocols
list of protocols advertised by the client through ALPN (1.13.10). The
values are separated by commas.

Nginx, Inc. p.476 of 563

CHAPTER 3. STREAM SERVER MODULES 3.21. MODULE NGX STREAM UPSTREAM MODULE

3.21 Module ngx stream upstream module

3.21.1 Summary . 477
3.21.2 Example Configuration 477
3.21.3 Directives . 478

upstream . 478
server . 478
zone . 480
state . 481
hash . 481
least conn . 482
least time . 482
random . 482
resolver . 483
resolver timeout . 484

3.21.4 Embedded Variables . 484

3.21.1 Summary

The ngx_stream_upstream_module module (1.9.0) is used to define
groups of servers that can be referenced by the proxy pass directive.

3.21.2 Example Configuration

upstream backend {
hash $remote_addr consistent;

server backend1.example.com:12345 weight=5;
server backend2.example.com:12345;
server unix:/tmp/backend3;

server backup1.example.com:12345 backup;
server backup2.example.com:12345 backup;

}

server {
listen 12346;
proxy_pass backend;

}

Dynamically configurable group with periodic health checks is available as
part of our commercial subscription:

resolver 10.0.0.1;

upstream dynamic {
zone upstream_dynamic 64k;

server backend1.example.com:12345 weight=5;
server backend2.example.com:12345 fail_timeout=5s slow_start=30s;
server 192.0.2.1:12345 max_fails=3;
server backend3.example.com:12345 resolve;
server backend4.example.com service=http resolve;

server backup1.example.com:12345 backup;

Nginx, Inc. p.477 of 563

https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.21. MODULE NGX STREAM UPSTREAM MODULE

server backup2.example.com:12345 backup;
}

server {
listen 12346;
proxy_pass dynamic;
health_check;

}

3.21.3 Directives

upstream

Syntax: upstream name { . . . }
Default —

Context: stream

Defines a group of servers. Servers can listen on different ports. In addition,
servers listening on TCP and UNIX-domain sockets can be mixed.

Example:

upstream backend {
server backend1.example.com:12345 weight=5;
server 127.0.0.1:12345 max_fails=3 fail_timeout=30s;
server unix:/tmp/backend2;
server backend3.example.com:12345 resolve;

server backup1.example.com:12345 backup;
}

By default, connections are distributed between the servers using a
weighted round-robin balancing method. In the above example, each
7 connections will be distributed as follows: 5 connections go to
backend1.example.com:12345 and one connection to each of the second
and third servers. If an error occurs during communication with a server,
the connection will be passed to the next server, and so on until all of the
functioning servers will be tried. If communication with all servers fails, the
connection will be closed.

server

Syntax: server address [parameters];

Default —

Context: upstream

Defines the address and other parameters of a server. The address can be
specified as a domain name or IP address with an obligatory port, or as a
UNIX-domain socket path specified after the “unix:” prefix. A domain name
that resolves to several IP addresses defines multiple servers at once.

The following parameters can be defined:

weight=number
sets the weight of the server, by default, 1.

Nginx, Inc. p.478 of 563

CHAPTER 3. STREAM SERVER MODULES 3.21. MODULE NGX STREAM UPSTREAM MODULE

max_conns=number
limits the maximum number of simultaneous connections to the proxied
server (1.11.5). Default value is zero, meaning there is no limit. If the
server group does not reside in the shared memory, the limitation works
per each worker process.

Prior to version 1.11.5, this parameter was available as part of our
commercial subscription.

max_fails=number
sets the number of unsuccessful attempts to communicate with the
server that should happen in the duration set by the fail_timeout
parameter to consider the server unavailable for a duration also set by
the fail_timeout parameter. By default, the number of unsuccessful
attempts is set to 1. The zero value disables the accounting of attempts.
Here, an unsuccessful attempt is an error or timeout while establishing
a connection with the server.

fail_timeout=time
sets

• the time during which the specified number of unsuccessful attempts
to communicate with the server should happen to consider the server
unavailable;

• and the period of time the server will be considered unavailable.

By default, the parameter is set to 10 seconds.

backup
marks the server as a backup server. Connections to the backup server
will be passed when the primary servers are unavailable.

The parameter cannot be used along with the hash and random load
balancing methods.

down
marks the server as permanently unavailable.

Additionally, the following parameters are available as part of our
commercial subscription:

resolve
monitors changes of the IP addresses that correspond to a domain name
of the server, and automatically modifies the upstream configuration
without the need of restarting nginx. The server group must reside in
the shared memory.
In order for this parameter to work, the resolver directive must be
specified in the stream block or in the corresponding upstream block.

Nginx, Inc. p.479 of 563

https://nginx.com/products/
https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.21. MODULE NGX STREAM UPSTREAM MODULE

service=name
enables resolving of DNS SRV records and sets the service name (1.9.13).
In order for this parameter to work, it is necessary to specify the resolve
parameter for the server and specify a hostname without a port number.
If the service name does not contain a dot (“.”), then the RFC-compliant
name is constructed and the TCP protocol is added to the service prefix.
For example, to look up the _http._tcp.backend.example.com
SRV record, it is necessary to specify the directive:

server backend.example.com service=http resolve;

If the service name contains one or more dots, then the name is
constructed by joining the service prefix and the server name. For
example, to look up the _http._tcp.backend.example.com and
server1.backend.example.com SRV records, it is necessary to
specify the directives:

server backend.example.com service=_http._tcp resolve;
server example.com service=server1.backend resolve;

Highest-priority SRV records (records with the same lowest-number
priority value) are resolved as primary servers, the rest of SRV records
are resolved as backup servers. If the backup parameter is specified for
the server, high-priority SRV records are resolved as backup servers, the
rest of SRV records are ignored.

slow_start=time
sets the time during which the server will recover its weight from zero
to a nominal value, when unhealthy server becomes healthy, or when
the server becomes available after a period of time it was considered
unavailable. Default value is zero, i.e. slow start is disabled.

The parameter cannot be used along with the hash and random load
balancing methods.

If there is only a single server in a group, max_fails, fail_timeout
and slow_start parameters are ignored, and such a server will never be
considered unavailable.

zone

Syntax: zone name [size];

Default —

Context: upstream

Defines the name and size of the shared memory zone that keeps the group’s
configuration and run-time state that are shared between worker processes.
Several groups may share the same zone. In this case, it is enough to specify
the size only once.

Nginx, Inc. p.480 of 563

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782

CHAPTER 3. STREAM SERVER MODULES 3.21. MODULE NGX STREAM UPSTREAM MODULE

Additionally, as part of our commercial subscription, such groups allow
changing the group membership or modifying the settings of a particular server
without the need of restarting nginx. The configuration is accessible via the
API module (1.13.3).

Prior to version 1.13.3, the configuration was accessible only via a special
location handled by upstream conf.

state

Syntax: state file;

Default —

Context: upstream
This directive appeared in version 1.9.7.

Specifies a file that keeps the state of the dynamically configurable group.
Examples:

state /var/lib/nginx/state/servers.conf; # path for Linux
state /var/db/nginx/state/servers.conf; # path for FreeBSD

The state is currently limited to the list of servers with their parameters.
The file is read when parsing the configuration and is updated each time the
upstream configuration is changed. Changing the file content directly should
be avoided. The directive cannot be used along with the server directive.

Changes made during configuration reload or binary upgrade can be lost.

This directive is available as part of our commercial subscription.

hash

Syntax: hash key [consistent];

Default —

Context: upstream

Specifies a load balancing method for a server group where the client-server
mapping is based on the hashed key value. The key can contain text, variables,
and their combinations (1.11.2). Usage example:

hash $remote_addr;

Note that adding or removing a server from the group may result in
remapping most of the keys to different servers. The method is compatible
with the Cache::Memcached Perl library.

If the consistent parameter is specified, the ketama consistent hashing
method will be used instead. The method ensures that only a few keys will be
remapped to different servers when a server is added to or removed from the

Nginx, Inc. p.481 of 563

https://nginx.com/products/
https://nginx.org/en/docs/control.html#reconfiguration
https://nginx.org/en/docs/control.html#upgrade
https://nginx.com/products/
https://metacpan.org/pod/Cache::Memcached
https://www.metabrew.com/article/libketama-consistent-hashing-algo-memcached-clients

CHAPTER 3. STREAM SERVER MODULES 3.21. MODULE NGX STREAM UPSTREAM MODULE

group. This helps to achieve a higher cache hit ratio for caching servers. The
method is compatible with the Cache::Memcached::Fast Perl library with the
ketama points parameter set to 160.

least conn

Syntax: least_conn;

Default —

Context: upstream

Specifies that a group should use a load balancing method where a
connection is passed to the server with the least number of active connections,
taking into account weights of servers. If there are several such servers, they
are tried in turn using a weighted round-robin balancing method.

least time

Syntax: least_time connect | first_byte | last_byte [inflight];

Default —

Context: upstream

Specifies that a group should use a load balancing method where a
connection is passed to the server with the least average time and least number
of active connections, taking into account weights of servers. If there are several
such servers, they are tried in turn using a weighted round-robin balancing
method.

If the connect parameter is specified, time to connect to the upstream
server is used. If the first_byte parameter is specified, time to receive the
first byte of data is used. If the last_byte is specified, time to receive the
last byte of data is used. If the inflight parameter is specified (1.11.6),
incomplete connections are also taken into account.

Prior to version 1.11.6, incomplete connections were taken into account
by default.

This directive is available as part of our commercial subscription.

random

Syntax: random [two [method]];

Default —

Context: upstream
This directive appeared in version 1.15.1.

Specifies that a group should use a load balancing method where a
connection is passed to a randomly selected server, taking into account weights
of servers.

The optional two parameter instructs nginx to randomly select two servers
and then choose a server using the specified method. The default method is

Nginx, Inc. p.482 of 563

https://metacpan.org/pod/Cache::Memcached::Fast
https://nginx.com/products/
https://homes.cs.washington.edu/~karlin/papers/balls.pdf

CHAPTER 3. STREAM SERVER MODULES 3.21. MODULE NGX STREAM UPSTREAM MODULE

least_conn which passes a connection to a server with the least number of
active connections.

The least_time method passes a connection to a server with the
least average time and least number of active connections. If least_-
time=connect parameter is specified, time to connect to the upstream server
is used. If least_time=first_byte parameter is specified, time to receive
the first byte of data is used. If least_time=last_byte is specified, time
to receive the last byte of data is used.

The least_time method is available as a part of our
commercial subscription.

resolver

Syntax: resolver address . . . [valid=time] [ipv4=on|off] [ipv6=on|off]

[status_zone=zone];

Default —

Context: upstream
This directive appeared in version 1.17.5.

Configures name servers used to resolve names of upstream servers into
addresses, for example:

resolver 127.0.0.1 [::1]:5353;

The address can be specified as a domain name or IP address, with an
optional port. If port is not specified, the port 53 is used. Name servers are
queried in a round-robin fashion.

By default, nginx will look up both IPv4 and IPv6 addresses while resolving.
If looking up of IPv4 or IPv6 addresses is not desired, the ipv4=off (1.23.1)
or the ipv6=off parameter can be specified.

By default, nginx caches answers using the TTL value of a response. The
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid=30s;

To prevent DNS spoofing, it is recommended configuring DNS servers in
a properly secured trusted local network.

The optional status_zone parameter enables collection of DNS server
statistics of requests and responses in the specified zone.

This directive is available as part of our commercial subscription.

Nginx, Inc. p.483 of 563

https://nginx.com/products/
https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.21. MODULE NGX STREAM UPSTREAM MODULE

resolver timeout

Syntax: resolver_timeout time;

Default 30s

Context: upstream
This directive appeared in version 1.17.5.

Sets a timeout for name resolution, for example:

resolver_timeout 5s;

This directive is available as part of our commercial subscription.

3.21.4 Embedded Variables

The ngx_stream_upstream_module module supports the following
embedded variables:

$upstream addr
keeps the IP address and port, or the path to the UNIX-
domain socket of the upstream server (1.11.4). If several servers
were contacted during proxying, their addresses are separated by
commas, e.g. “192.168.1.1:12345, 192.168.1.2:12345,
unix:/tmp/sock”. If a server cannot be selected, the variable keeps
the name of the server group.

$upstream bytes received
number of bytes received from an upstream server (1.11.4). Values
from several connections are separated by commas like addresses in the
$upstream addr variable.

$upstream bytes sent
number of bytes sent to an upstream server (1.11.4). Values from several
connections are separated by commas like addresses in the $upstream -
addr variable.

$upstream connect time
time to connect to the upstream server (1.11.4); the time is kept in
seconds with millisecond resolution. Times of several connections are
separated by commas like addresses in the $upstream addr variable.

$upstream first byte time
time to receive the first byte of data (1.11.4); the time is kept in seconds
with millisecond resolution. Times of several connections are separated
by commas like addresses in the $upstream addr variable.

$upstream session time
session duration in seconds with millisecond resolution (1.11.4). Times
of several connections are separated by commas like addresses in the
$upstream addr variable.

Nginx, Inc. p.484 of 563

https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.22. MODULE NGX STREAM UPSTREAM HC MODULE

3.22 Module ngx stream upstream hc mod-

ule

3.22.1 Summary . 485
3.22.2 Example Configuration 485
3.22.3 Directives . 486

health check . 486
health check timeout . 487
match . 487

3.22.1 Summary

The ngx_stream_upstream_hc_module module (1.9.0) allows en-
abling periodic health checks of the servers in a group. The server group
must reside in the shared memory.

If a health check fails, the server will be considered unhealthy. If several
health checks are defined for the same group of servers, a single failure of
any check will make the corresponding server be considered unhealthy. Client
connections are not passed to unhealthy servers and servers in the “checking”
state.

This module is available as part of our commercial subscription.

3.22.2 Example Configuration

upstream tcp {
zone upstream_tcp 64k;

server backend1.example.com:12345 weight=5;
server backend2.example.com:12345 fail_timeout=5s slow_start=30s;
server 192.0.2.1:12345 max_fails=3;

server backup1.example.com:12345 backup;
server backup2.example.com:12345 backup;

}

server {
listen 12346;
proxy_pass tcp;
health_check;

}

With this configuration, nginx will check the ability to establish a TCP
connection to each server in the tcp group every five seconds. When a
connection to the server cannot be established, the health check will fail, and
the server will be considered unhealthy.

Health checks can be configured for the UDP protocol:

upstream dns_upstream {

Nginx, Inc. p.485 of 563

https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.22. MODULE NGX STREAM UPSTREAM HC MODULE

zone dns_zone 64k;

server dns1.example.com:53;
server dns2.example.com:53;
server dns3.example.com:53;

}

server {
listen 53 udp;
proxy_pass dns_upstream;
health_check udp;

}

In this case, the absence of ICMP “Destination Unreachable”
message is expected in reply to the sent string “nginx health check”.

Health checks can also be configured to test data obtained from the server.
Tests are configured separately using the match directive and referenced in the
match parameter of the health check directive.

3.22.3 Directives

health check

Syntax: health_check [parameters];

Default —

Context: server

Enables periodic health checks of the servers in a group.
The following optional parameters are supported:

interval=time
sets the interval between two consecutive health checks, by default, 5
seconds.

jitter=time
sets the time within which each health check will be randomly delayed,
by default, there is no delay.

fails=number
sets the number of consecutive failed health checks of a particular server
after which this server will be considered unhealthy, by default, 1.

passes=number
sets the number of consecutive passed health checks of a particular server
after which the server will be considered healthy, by default, 1.

mandatory [persistent]
sets the initial “checking” state for a server until the first health check
is completed (1.11.7). Client connections are not passed to servers in
the “checking” state. If the parameter is not specified, the server will be
initially considered healthy.
The persistent parameter (1.21.1) sets the initial “up” state for a
server after reload if the server was considered healthy before reload.

match=name
specifies the match block configuring the tests that a successful
connection should pass in order for a health check to pass. By default,

Nginx, Inc. p.486 of 563

CHAPTER 3. STREAM SERVER MODULES 3.22. MODULE NGX STREAM UPSTREAM HC MODULE

for TCP, only the ability to establish a TCP connection with the
server is checked. For UDP, the absence of ICMP “Destination
Unreachable” message is expected in reply to the sent string “nginx
health check”.

Prior to version 1.11.7, by default, UDP health check required a match
block with the send and expect parameters.

port=number
defines the port used when connecting to a server to perform a health
check (1.9.7). By default, equals the server port.

udp
specifies that the UDP protocol should be used for health checks instead
of the default TCP protocol (1.9.13).

health check timeout

Syntax: health_check_timeout timeout;

Default 5s

Context: stream, server

Overrides the proxy timeout value for health checks.

match

Syntax: match name { . . . }
Default —

Context: stream

Defines the named test set used to verify server responses to health checks.
The following parameters can be configured:

send string;
sends a string to the server;

expect string | ~ regex;
a literal string (1.9.12) or a regular expression that the data obtained
from the server should match. The regular expression is specified with
the preceding “~*” modifier (for case-insensitive matching), or the “~”
modifier (for case-sensitive matching).

Both send and expect parameters can contain hexadecimal literals with the
prefix “\x” followed by two hex digits, for example, “\x80” (1.9.12).

Health check is passed if:

• the TCP connection was successfully established;

• the string from the send parameter, if specified, was sent;

• the data obtained from the server matched the string or regular
expression from the expect parameter, if specified;

Nginx, Inc. p.487 of 563

CHAPTER 3. STREAM SERVER MODULES 3.22. MODULE NGX STREAM UPSTREAM HC MODULE

• the time elapsed does not exceed the value specified in the health check -
timeout directive.

Example:

upstream backend {
zone upstream_backend 10m;
server 127.0.0.1:12345;

}

match http {
send "GET / HTTP/1.0\r\nHost: localhost\r\n\r\n";
expect ~ "200 OK";

}

server {
listen 12346;
proxy_pass backend;
health_check match=http;

}

Only the first proxy buffer size bytes of data obtained from the server are
examined.

Nginx, Inc. p.488 of 563

CHAPTER 3. STREAM SERVER MODULES 3.23. MODULE NGX STREAM ZONE SYNC MODULE

3.23 Module ngx stream zone sync module

3.23.1 Summary . 489
3.23.2 Example Configuration 489
3.23.3 Directives . 491

zone sync . 491
zone sync buffers . 491
zone sync connect retry interval 491
zone sync connect timeout 491
zone sync interval . 491
zone sync recv buffer size 492
zone sync server . 492
zone sync ssl . 492
zone sync ssl certificate 493
zone sync ssl certificate key 493
zone sync ssl ciphers . 493
zone sync ssl conf command 493
zone sync ssl crl . 494
zone sync ssl name . 494
zone sync ssl password file 494
zone sync ssl protocols 494
zone sync ssl server name 494
zone sync ssl trusted certificate 495
zone sync ssl verify . 495
zone sync ssl verify depth 495
zone sync timeout . 495

3.23.4 API endpoints . 495
3.23.5 Starting, stopping, removing a cluster node 495

3.23.1 Summary

The ngx_stream_zone_sync_module module (1.13.8) provides the
necessary support for synchronizing contents of shared memory zones between
nodes of a cluster. To enable synchronization for a particular zone, a
corresponding module must support this feature. Currently, it is possible
to synchronize HTTP sticky sessions, information about excessive HTTP
requests, and key-value pairs both in http and stream.

This module is available as part of our commercial subscription.

3.23.2 Example Configuration

Minimal configuration:

Nginx, Inc. p.489 of 563

https://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.23. MODULE NGX STREAM ZONE SYNC MODULE

http {
...

upstream backend {
server backend1.example.com:8080;
server backend2.example.com:8081;

sticky learn
create=$upstream_cookie_examplecookie
lookup=$cookie_examplecookie
zone=client_sessions:1m sync;

}

...
}

stream {
...

server {
zone_sync;

listen 127.0.0.1:12345;

cluster of 2 nodes
zone_sync_server a.example.com:12345;
zone_sync_server b.example.com:12345;

}

A more complex configuration with SSL enabled and with cluster members
defined by DNS:

...

stream {
...

resolver 127.0.0.1 valid=10s;

server {
zone_sync;

the name resolves to multiple addresses that correspond to cluster
nodes

zone_sync_server cluster.example.com:12345 resolve;

listen 127.0.0.1:4433 ssl;

ssl_certificate localhost.crt;
ssl_certificate_key localhost.key;

zone_sync_ssl on;

zone_sync_ssl_certificate localhost.crt;
zone_sync_ssl_certificate_key localhost.key;

}
}

Nginx, Inc. p.490 of 563

CHAPTER 3. STREAM SERVER MODULES 3.23. MODULE NGX STREAM ZONE SYNC MODULE

3.23.3 Directives

zone sync

Syntax: zone_sync;

Default —

Context: server

Enables the synchronization of shared memory zones between cluster nodes.
Cluster nodes are defined using zone sync server directives.

zone sync buffers

Syntax: zone_sync_buffers number size;

Default 8 4k|8k

Context: stream, server

Sets the number and size of the per-zone buffers used for pushing zone
contents. By default, the buffer size is equal to one memory page. This is
either 4K or 8K, depending on a platform.

A single buffer must be large enough to hold any entry of each zone being
synchronized.

zone sync connect retry interval

Syntax: zone_sync_connect_retry_interval time;

Default 1s

Context: stream, server

Defines an interval between connection attempts to another cluster node.

zone sync connect timeout

Syntax: zone_sync_connect_timeout time;

Default 5s

Context: stream, server

Defines a timeout for establishing a connection with another cluster node.

zone sync interval

Syntax: zone_sync_interval time;

Default 1s

Context: stream, server

Defines an interval for polling updates in a shared memory zone.

Nginx, Inc. p.491 of 563

CHAPTER 3. STREAM SERVER MODULES 3.23. MODULE NGX STREAM ZONE SYNC MODULE

zone sync recv buffer size

Syntax: zone_sync_recv_buffer_size size;

Default 4k|8k

Context: stream, server

Sets size of a per-connection receive buffer used to parse incoming stream of
synchronization messages. The buffer size must be equal or greater than one of
the zone sync buffers. By default, the buffer size is equal to zone sync buffers
size multiplied by number.

zone sync server

Syntax: zone_sync_server address [resolve];

Default —

Context: server

Defines the address of a cluster node. The address can be specified as a
domain name or IP address with a mandatory port, or as a UNIX-domain
socket path specified after the “unix:” prefix. A domain name that resolves
to several IP addresses defines multiple nodes at once.

The resolve parameter instructs nginx to monitor changes of the IP
addresses that correspond to a domain name of the node and automatically
modify the configuration without the need of restarting nginx.

Cluster nodes are specified either dynamically as a single zone_sync_-
server directive with the resolve parameter, or statically as a series of
several directives without the parameter.

Each cluster node should be specified only once.

All cluster nodes should use the same configuration.

In order for the resolve parameter to work, the resolver directive must
be specified in the stream block. Example:

stream {
resolver 10.0.0.1;

server {
zone_sync;
zone_sync_server cluster.example.com:12345 resolve;
...

}
}

zone sync ssl

Syntax: zone_sync_ssl on | off;

Default off

Context: stream, server

Enables the SSL/TLS protocol for connections to another cluster server.

Nginx, Inc. p.492 of 563

CHAPTER 3. STREAM SERVER MODULES 3.23. MODULE NGX STREAM ZONE SYNC MODULE

zone sync ssl certificate

Syntax: zone_sync_ssl_certificate file;

Default —

Context: stream, server

Specifies a file with the certificate in the PEM format used for
authentication to another cluster server.

zone sync ssl certificate key

Syntax: zone_sync_ssl_certificate_key file;

Default —

Context: stream, server

Specifies a file with the secret key in the PEM format used for
authentication to another cluster server.

zone sync ssl ciphers

Syntax: zone_sync_ssl_ciphers ciphers;

Default DEFAULT

Context: stream, server

Specifies the enabled ciphers for connections to another cluster server. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

zone sync ssl conf command

Syntax: zone_sync_ssl_conf_command name value;

Default —

Context: stream, server
This directive appeared in version 1.19.4.

Sets arbitrary OpenSSL configuration commands when establishing a
connection with another cluster server.

The directive is supported when using OpenSSL 1.0.2 or higher.

Several zone_sync_ssl_conf_command directives can be specified on
the same level. These directives are inherited from the previous configuration
level if and only if there are no zone_sync_ssl_conf_command directives
defined on the current level.

Note that configuring OpenSSL directly might result in unexpected
behavior.

Nginx, Inc. p.493 of 563

https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html

CHAPTER 3. STREAM SERVER MODULES 3.23. MODULE NGX STREAM ZONE SYNC MODULE

zone sync ssl crl

Syntax: zone_sync_ssl_crl file;

Default —

Context: stream, server

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify the certificate of another cluster server.

zone sync ssl name

Syntax: zone_sync_ssl_name name;

Default host from zone_sync_server

Context: stream, server
This directive appeared in version 1.15.7.

Allows overriding the server name used to verify the certificate of a cluster
server and to be passed through SNI when establishing a connection with the
cluster server.

By default, the host part of the zone sync server address is used, or resolved
IP address if the resolve parameter is specified.

zone sync ssl password file

Syntax: zone_sync_ssl_password_file file;

Default —

Context: stream, server

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

zone sync ssl protocols

Syntax: zone_sync_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1]

[TLSv1.2] [TLSv1.3];

Default TLSv1 TLSv1.1 TLSv1.2

Context: stream, server

Enables the specified protocols for connections to another cluster server.

zone sync ssl server name

Syntax: zone_sync_ssl_server_name on | off;

Default off

Context: stream, server
This directive appeared in version 1.15.7.

Enables or disables passing of the server name through TLS Server Name
Indication extension (SNI, RFC 6066) when establishing a connection with
another cluster server.

Nginx, Inc. p.494 of 563

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 3. STREAM SERVER MODULES 3.23. MODULE NGX STREAM ZONE SYNC MODULE

zone sync ssl trusted certificate

Syntax: zone_sync_ssl_trusted_certificate file;

Default —

Context: stream, server

Specifies a file with trusted CA certificates in the PEM format used to
verify the certificate of another cluster server.

zone sync ssl verify

Syntax: zone_sync_ssl_verify on | off;

Default off

Context: stream, server

Enables or disables verification of another cluster server certificate.

zone sync ssl verify depth

Syntax: zone_sync_ssl_verify_depth number;

Default 1

Context: stream, server

Sets the verification depth in another cluster server certificates chain.

zone sync timeout

Syntax: zone_sync_timeout timeout;

Default 5s

Context: stream, server

Sets the timeout between two successive read or write operations on
connection to another cluster node. If no data is transmitted within this time,
the connection is closed.

3.23.4 API endpoints

The synchronization status of a node is available via the /stream/zone -
sync/ endpoint of the API which returns the following metrics.

3.23.5 Starting, stopping, removing a cluster node

To start a new node, update a DNS record of a cluster hostname with the
IP address of the new node and start an instance. The new node will discover
other nodes from DNS or static configuration and will start sending updates
to them. Other nodes will eventually discover the new node using DNS and
start pushing updates to it. In case of static configuration, other nodes need
to be reloaded in order to send updates to the new node.

To stop a node, send the QUIT signal to the instance. The node will finish
zone synchronization and gracefully close open connections.

Nginx, Inc. p.495 of 563

CHAPTER 3. STREAM SERVER MODULES 3.23. MODULE NGX STREAM ZONE SYNC MODULE

To remove a node, update a DNS record of a cluster hostname and remove
the IP address of the node. All other nodes will eventually discover that the
node is removed, close connections to the node, and will no longer try to
connect to it. After the node is removed, it can be stopped as described above.
In case of static configuration, other nodes need to be reloaded in order to stop
sending updates to the removed node.

Nginx, Inc. p.496 of 563

Chapter 4

Mail server modules

4.1 Module ngx mail core module

4.1.1 Summary . 497
4.1.2 Example Configuration 497
4.1.3 Directives . 498

listen . 498
mail . 500
max errors . 500
protocol . 500
resolver . 500
resolver timeout . 501
server . 502
server name . 502
timeout . 502

4.1.1 Summary

This module is not built by default, it should be enabled with the
--with-mail configuration parameter.

4.1.2 Example Configuration

worker_processes auto;

error_log /var/log/nginx/error.log info;

events {
worker_connections 1024;

}

mail {
server_name mail.example.com;
auth_http localhost:9000/cgi-bin/nginxauth.cgi;

imap_capabilities IMAP4rev1 UIDPLUS IDLE LITERAL+ QUOTA;

pop3_auth plain apop cram-md5;
pop3_capabilities LAST TOP USER PIPELINING UIDL;

497

CHAPTER 4. MAIL SERVER MODULES 4.1. MODULE NGX MAIL CORE MODULE

smtp_auth login plain cram-md5;
smtp_capabilities "SIZE 10485760" ENHANCEDSTATUSCODES 8BITMIME DSN;
xclient off;

server {
listen 25;
protocol smtp;

}
server {

listen 110;
protocol pop3;
proxy_pass_error_message on;

}
server {

listen 143;
protocol imap;

}
server {

listen 587;
protocol smtp;

}
}

4.1.3 Directives

listen

Syntax: listen address:port [ssl] [proxy_protocol] [backlog=number]

[rcvbuf=size] [sndbuf=size] [bind] [ipv6only=on|off]

[so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Default —

Context: server

Sets the address and port for the socket on which the server will accept
requests. It is possible to specify just the port. The address can also be a
hostname, for example:

listen 127.0.0.1:110;
listen *:110;
listen 110; # same as *:110
listen localhost:110;

IPv6 addresses (0.7.58) are specified in square brackets:

listen [::1]:110;
listen [::]:110;

UNIX-domain sockets (1.3.5) are specified with the “unix:” prefix:

listen unix:/var/run/nginx.sock;

Different servers must listen on different address:port pairs.
The ssl parameter allows specifying that all connections accepted on this

port should work in SSL mode.
The proxy_protocol parameter (1.19.8) allows specifying that all

connections accepted on this port should use the PROXY protocol. Obtained

Nginx, Inc. p.498 of 563

http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

CHAPTER 4. MAIL SERVER MODULES 4.1. MODULE NGX MAIL CORE MODULE

information is passed to the authentication server and can be used to change
the client address.

The listen directive can have several additional parameters specific to
socket-related system calls.

backlog=number
sets the backlog parameter in the listen call that limits the
maximum length for the queue of pending connections (1.9.2). By
default, backlog is set to -1 on FreeBSD, DragonFly BSD, and macOS,
and to 511 on other platforms.

rcvbuf=size
sets the receive buffer size (the SO_RCVBUF option) for the listening
socket (1.11.13).

sndbuf=size
sets the send buffer size (the SO_SNDBUF option) for the listening socket
(1.11.13).

bind
this parameter instructs to make a separate bind call for a given
address:port pair. The fact is that if there are several listen directives
with the same port but different addresses, and one of the listen
directives listens on all addresses for the given port (*:port), nginx will
bind only to *:port. It should be noted that the getsockname system
call will be made in this case to determine the address that accepted the
connection. If the backlog, rcvbuf, sndbuf, ipv6only, or so_-
keepalive parameters are used then for a given address:port pair a
separate bind call will always be made.

ipv6only=on|off
this parameter determines (via the IPV6_V6ONLY socket option)
whether an IPv6 socket listening on a wildcard address [::] will
accept only IPv6 connections or both IPv6 and IPv4 connections. This
parameter is turned on by default. It can only be set once on start.

so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]
this parameter configures the “TCP keepalive” behavior for the listening
socket. If this parameter is omitted then the operating system’s settings
will be in effect for the socket. If it is set to the value “on”, the
SO_KEEPALIVE option is turned on for the socket. If it is set to the
value “off”, the SO_KEEPALIVE option is turned off for the socket.
Some operating systems support setting of TCP keepalive parameters on
a per-socket basis using the TCP_KEEPIDLE, TCP_KEEPINTVL, and
TCP_KEEPCNT socket options. On such systems (currently, Linux 2.4+,
NetBSD 5+, and FreeBSD 9.0-STABLE), they can be configured using
the keepidle, keepintvl, and keepcnt parameters. One or two parameters
may be omitted, in which case the system default setting for the
corresponding socket option will be in effect. For example,

so_keepalive=30m::10

Nginx, Inc. p.499 of 563

CHAPTER 4. MAIL SERVER MODULES 4.1. MODULE NGX MAIL CORE MODULE

will set the idle timeout (TCP_KEEPIDLE) to 30 minutes, leave the probe
interval (TCP_KEEPINTVL) at its system default, and set the probes
count (TCP_KEEPCNT) to 10 probes.

mail

Syntax: mail { . . . }
Default —

Context: main

Provides the configuration file context in which the mail server directives
are specified.

max errors

Syntax: max_errors number;

Default 5

Context: mail, server
This directive appeared in version 1.21.0.

Sets the number of protocol errors after which the connection is closed.

protocol

Syntax: protocol imap | pop3 | smtp;

Default —

Context: server

Sets the protocol for a proxied server. Supported protocols are IMAP,
POP3, and SMTP.

If the directive is not set, the protocol can be detected automatically based
on the well-known port specified in the listen directive:

• imap: 143, 993

• pop3: 110, 995

• smtp: 25, 587, 465

Unnecessary protocols can be disabled using the configuration parameters
--without-mail_imap_module, --without-mail_pop3_module,
and --without-mail_smtp_module.

resolver

Syntax: resolver address . . . [valid=time] [ipv4=on|off] [ipv6=on|off]

[status_zone=zone];

Syntax: resolver off;

Default off

Context: mail, server

Nginx, Inc. p.500 of 563

https://nginx.org/en/docs/configure.html

CHAPTER 4. MAIL SERVER MODULES 4.1. MODULE NGX MAIL CORE MODULE

Configures name servers used to find the client’s hostname to pass it to the
authentication server, and in the XCLIENT command when proxying SMTP.
For example:

resolver 127.0.0.1 [::1]:5353;

The address can be specified as a domain name or IP address, with an
optional port (1.3.1, 1.2.2). If port is not specified, the port 53 is used. Name
servers are queried in a round-robin fashion.

Before version 1.1.7, only a single name server could be configured.
Specifying name servers using IPv6 addresses is supported starting from
versions 1.3.1 and 1.2.2.

By default, nginx will look up both IPv4 and IPv6 addresses while resolving.
If looking up of IPv4 or IPv6 addresses is not desired, the ipv4=off (1.23.1)
or the ipv6=off parameter can be specified.

Resolving of names into IPv6 addresses is supported starting from version
1.5.8.

By default, nginx caches answers using the TTL value of a response. An
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid=30s;

Before version 1.1.9, tuning of caching time was not possible, and nginx
always cached answers for the duration of 5 minutes.

To prevent DNS spoofing, it is recommended configuring DNS servers in
a properly secured trusted local network.

The optional status_zone parameter (1.17.1) enables collection of DNS
server statistics of requests and responses in the specified zone. The parameter
is available as part of our commercial subscription.

The special value off disables resolving.

resolver timeout

Syntax: resolver_timeout time;

Default 30s

Context: mail, server

Sets a timeout for DNS operations, for example:

resolver_timeout 5s;

Nginx, Inc. p.501 of 563

https://nginx.com/products/

CHAPTER 4. MAIL SERVER MODULES 4.1. MODULE NGX MAIL CORE MODULE

server

Syntax: server { . . . }
Default —

Context: mail

Sets the configuration for a server.

server name

Syntax: server_name name;

Default hostname

Context: mail, server

Sets the server name that is used:

• in the initial POP3/SMTP server greeting;

• in the salt during the SASL CRAM-MD5 authentication;

• in the EHLO command when connecting to the SMTP backend, if the
passing of the XCLIENT command is enabled.

If the directive is not specified, the machine’s hostname is used.

timeout

Syntax: timeout time;

Default 60s

Context: mail, server

Sets the timeout that is used before proxying to the backend starts.

Nginx, Inc. p.502 of 563

CHAPTER 4. MAIL SERVER MODULES 4.2. MODULE NGX MAIL AUTH HTTP MODULE

4.2 Module ngx mail auth http module

4.2.1 Directives . 503
auth http . 503
auth http header . 503
auth http pass client cert 503
auth http timeout . 503

4.2.2 Protocol . 504

4.2.1 Directives

auth http

Syntax: auth_http URL;

Default —

Context: mail, server

Sets the URL of the HTTP authentication server. The protocol is described
below.

auth http header

Syntax: auth_http_header header value;

Default —

Context: mail, server

Appends the specified header to requests sent to the authentication server.
This header can be used as the shared secret to verify that the request comes
from nginx. For example:

auth_http_header X-Auth-Key "secret_string";

auth http pass client cert

Syntax: auth_http_pass_client_cert on | off;

Default off

Context: mail, server
This directive appeared in version 1.7.11.

Appends the Auth-SSL-Cert header with the client certificate in the
PEM format (urlencoded) to requests sent to the authentication server.

auth http timeout

Syntax: auth_http_timeout time;

Default 60s

Context: mail, server

Sets the timeout for communication with the authentication server.

Nginx, Inc. p.503 of 563

CHAPTER 4. MAIL SERVER MODULES 4.2. MODULE NGX MAIL AUTH HTTP MODULE

4.2.2 Protocol

The HTTP protocol is used to communicate with the authentication server.
The data in the response body is ignored, the information is passed only in
the headers.

Examples of requests and responses:
Request:

GET /auth HTTP/1.0
Host: localhost
Auth-Method: plain # plain/apop/cram-md5/external
Auth-User: user
Auth-Pass: password
Auth-Protocol: imap # imap/pop3/smtp
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Client-Host: client.example.org

Good response:

HTTP/1.0 200 OK
Auth-Status: OK
Auth-Server: 198.51.100.1
Auth-Port: 143

Bad response:

HTTP/1.0 200 OK
Auth-Status: Invalid login or password
Auth-Wait: 3

If there is no Auth-Wait header, an error will be returned and the
connection will be closed. The current implementation allocates memory
for each authentication attempt. The memory is freed only at the end
of a session. Therefore, the number of invalid authentication attempts in
a single session must be limited — the server must respond without the
Auth-Wait header after 10-20 attempts (the attempt number is passed in
the Auth-Login-Attempt header).

When the APOP or CRAM-MD5 are used, request-response will look as
follows:

GET /auth HTTP/1.0
Host: localhost
Auth-Method: apop
Auth-User: user
Auth-Salt: <238188073.1163692009@mail.example.com>
Auth-Pass: auth_response
Auth-Protocol: imap
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Client-Host: client.example.org

Good response:

HTTP/1.0 200 OK
Auth-Status: OK
Auth-Server: 198.51.100.1

Nginx, Inc. p.504 of 563

CHAPTER 4. MAIL SERVER MODULES 4.2. MODULE NGX MAIL AUTH HTTP MODULE

Auth-Port: 143
Auth-Pass: plain-text-pass

If the Auth-User header exists in the response, it overrides the username
used to authenticate with the backend.

For the SMTP, the response additionally takes into account the
Auth-Error-Code header — if exists, it is used as a response code in case
of an error. Otherwise, the 535 5.7.0 code will be added to the Auth-Status
header.

For example, if the following response is received from the authentication
server:

HTTP/1.0 200 OK
Auth-Status: Temporary server problem, try again later
Auth-Error-Code: 451 4.3.0
Auth-Wait: 3

then the SMTP client will receive an error

451 4.3.0 Temporary server problem, try again later

If proxying SMTP does not require authentication, the request will look as
follows:

GET /auth HTTP/1.0
Host: localhost
Auth-Method: none
Auth-User:
Auth-Pass:
Auth-Protocol: smtp
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Client-Host: client.example.org
Auth-SMTP-Helo: client.example.org
Auth-SMTP-From: MAIL FROM: <>
Auth-SMTP-To: RCPT TO: <postmaster@mail.example.com>

For the SSL/TLS client connection (1.7.11), the Auth-SSL header is
added, and Auth-SSL-Verify will contain the result of client certificate
verification, if enabled: “SUCCESS”, “FAILED:reason”, and “NONE” if a
certificate was not present.

Prior to version 1.11.7, the “FAILED” result did not contain the reason
string.

When the client certificate was present, its details are passed in
the following request headers: Auth-SSL-Subject, Auth-SSL-Issuer,
Auth-SSL-Serial, and Auth-SSL-Fingerprint. If auth http pass -
client cert is enabled, the certificate itself is passed in the Auth-SSL-Cert
header. The protocol and cipher of the established connection are passed in
the Auth-SSL-Protocol and Auth-SSL-Cipher headers (1.21.2). The
request will look as follows:

Nginx, Inc. p.505 of 563

CHAPTER 4. MAIL SERVER MODULES 4.2. MODULE NGX MAIL AUTH HTTP MODULE

GET /auth HTTP/1.0
Host: localhost
Auth-Method: plain
Auth-User: user
Auth-Pass: password
Auth-Protocol: imap
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Auth-SSL: on
Auth-SSL-Protocol: TLSv1.3
Auth-SSL-Cipher: TLS_AES_256_GCM_SHA384
Auth-SSL-Verify: SUCCESS
Auth-SSL-Subject: /CN=example.com
Auth-SSL-Issuer: /CN=example.com
Auth-SSL-Serial: C07AD56B846B5BFF
Auth-SSL-Fingerprint: 29d6a80a123d13355ed16b4b04605e29cb55a5ad

When the PROXY protocol is used, its details are passed
in the following request headers: Proxy-Protocol-Addr,
Proxy-Protocol-Port, Proxy-Protocol-Server-Addr, and
Proxy-Protocol-Server-Port (1.19.8).

Nginx, Inc. p.506 of 563

CHAPTER 4. MAIL SERVER MODULES 4.3. MODULE NGX MAIL PROXY MODULE

4.3 Module ngx mail proxy module

4.3.1 Directives . 507
proxy buffer . 507
proxy pass error message 507
proxy protocol . 507
proxy smtp auth . 508
proxy timeout . 508
xclient . 508

4.3.1 Directives

proxy buffer

Syntax: proxy_buffer size;

Default 4k|8k

Context: mail, server

Sets the size of the buffer used for proxying. By default, the buffer size is
equal to one memory page. Depending on a platform, it is either 4K or 8K.

proxy pass error message

Syntax: proxy_pass_error_message on | off;

Default off

Context: mail, server

Indicates whether to pass the error message obtained during the
authentication on the backend to the client.

Usually, if the authentication in nginx is a success, the backend cannot
return an error. If it nevertheless returns an error, it means some internal
error has occurred. In such case the backend message can contain information
that should not be shown to the client. However, responding with an error
for the correct password is a normal behavior for some POP3 servers. For
example, CommuniGatePro informs a user about mailbox overflow or other
events by periodically outputting the authentication error. The directive
should be enabled in this case.

proxy protocol

Syntax: proxy_protocol on | off;

Default off

Context: mail, server
This directive appeared in version 1.19.8.

Enables the PROXY protocol for connections to a backend.

Nginx, Inc. p.507 of 563

http://www.stalker.com/CommuniGatePro/Alerts.html#Quota
http://www.stalker.com/CommuniGatePro/POP.html#Alerts
http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

CHAPTER 4. MAIL SERVER MODULES 4.3. MODULE NGX MAIL PROXY MODULE

proxy smtp auth

Syntax: proxy_smtp_auth on | off;

Default off

Context: mail, server
This directive appeared in version 1.19.4.

Enables or disables user authentication on the SMTP backend using the
AUTH command.

If XCLIENT is also enabled, then the XCLIENT command will not send
the LOGIN parameter.

proxy timeout

Syntax: proxy_timeout timeout;

Default 24h

Context: mail, server

Sets the timeout between two successive read or write operations on client
or proxied server connections. If no data is transmitted within this time, the
connection is closed.

xclient

Syntax: xclient on | off;

Default on

Context: mail, server

Enables or disables the passing of the XCLIENT command with client
parameters when connecting to the SMTP backend.

With XCLIENT, the MTA is able to write client information to the log and
apply various limitations based on this data.

If XCLIENT is enabled then nginx passes the following commands when
connecting to the backend:

• EHLO with the server name

• XCLIENT

• EHLO or HELO, as passed by the client

If the name found by the client IP address points to the same address, it is
passed in the NAME parameter of the XCLIENT command. If the name could
not be found, points to a different address, or resolver is not specified, the
[UNAVAILABLE] is passed in the NAME parameter. If an error has occurred
in the process of resolving, the [TEMPUNAVAIL] value is used.

If XCLIENT is disabled then nginx passes the EHLO command with the
server name when connecting to the backend if the client has passed EHLO, or
HELO with the server name, otherwise.

Nginx, Inc. p.508 of 563

http://www.postfix.org/XCLIENT_README.html

CHAPTER 4. MAIL SERVER MODULES 4.4. MODULE NGX MAIL REALIP MODULE

4.4 Module ngx mail realip module

4.4.1 Summary . 509
4.4.2 Example Configuration 509
4.4.3 Directives . 509

set real ip from . 509

4.4.1 Summary

The ngx_mail_realip_module module is used to change the client
address and port to the ones sent in the PROXY protocol header (1.19.8). The
PROXY protocol must be previously enabled by setting the proxy protocol
parameter in the listen directive.

4.4.2 Example Configuration

listen 110 proxy_protocol;

set_real_ip_from 192.168.1.0/24;
set_real_ip_from 192.168.2.1;
set_real_ip_from 2001:0db8::/32;

4.4.3 Directives

set real ip from

Syntax: set_real_ip_from address | CIDR | unix:;

Default —

Context: mail, server

Defines trusted addresses that are known to send correct replacement
addresses. If the special value unix: is specified, all UNIX-domain sockets
will be trusted.

Nginx, Inc. p.509 of 563

CHAPTER 4. MAIL SERVER MODULES 4.5. MODULE NGX MAIL SSL MODULE

4.5 Module ngx mail ssl module

4.5.1 Summary . 510
4.5.2 Example Configuration 510
4.5.3 Directives . 511

ssl . 511
ssl certificate . 511
ssl certificate key . 512
ssl ciphers . 512
ssl client certificate . 512
ssl conf command . 513
ssl crl . 513
ssl dhparam . 513
ssl ecdh curve . 513
ssl password file . 514
ssl prefer server ciphers 514
ssl protocols . 515
ssl session cache . 515
ssl session ticket key . 516
ssl session tickets . 516
ssl session timeout . 516
ssl trusted certificate . 517
ssl verify client . 517
ssl verify depth . 517
starttls . 517

4.5.1 Summary

The ngx_mail_ssl_module module provides the necessary support for
a mail proxy server to work with the SSL/TLS protocol.

This module is not built by default, it should be enabled with the
--with-mail_ssl_module configuration parameter.

This module requires the OpenSSL library.

4.5.2 Example Configuration

To reduce the processor load, it is recommended to

• set the number of worker processes equal to the number of processors,

• enable the shared session cache,

• disable the built-in session cache,

• and possibly increase the session lifetime (by default, 5 minutes):

Nginx, Inc. p.510 of 563

http://www.openssl.org

CHAPTER 4. MAIL SERVER MODULES 4.5. MODULE NGX MAIL SSL MODULE

worker_processes auto;

mail {

...

server {
listen 993 ssl;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3;
ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5;
ssl_certificate /usr/local/nginx/conf/cert.pem;
ssl_certificate_key /usr/local/nginx/conf/cert.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

...
}

4.5.3 Directives

ssl

Syntax: ssl on | off;

Default off

Context: mail, server

This directive was made obsolete in version 1.15.0 and was removed in
version 1.25.1. The ssl parameter of the listen directive should be used
instead.

ssl certificate

Syntax: ssl_certificate file;

Default —

Context: mail, server

Specifies a file with the certificate in the PEM format for the given server. If
intermediate certificates should be specified in addition to a primary certificate,
they should be specified in the same file in the following order: the primary
certificate comes first, then the intermediate certificates. A secret key in the
PEM format may be placed in the same file.

Since version 1.11.0, this directive can be specified multiple times to load
certificates of different types, for example, RSA and ECDSA:

server {
listen 993 ssl;

ssl_certificate example.com.rsa.crt;
ssl_certificate_key example.com.rsa.key;

ssl_certificate example.com.ecdsa.crt;
ssl_certificate_key example.com.ecdsa.key;

...
}

Nginx, Inc. p.511 of 563

CHAPTER 4. MAIL SERVER MODULES 4.5. MODULE NGX MAIL SSL MODULE

Only OpenSSL 1.0.2 or higher supports separate certificate chains for
different certificates. With older versions, only one certificate chain can be
used.

The value data:certificate can be specified instead of the file (1.15.10),
which loads a certificate without using intermediate files. Note that
inappropriate use of this syntax may have its security implications, such as
writing secret key data to error log.

ssl certificate key

Syntax: ssl_certificate_key file;

Default —

Context: mail, server

Specifies a file with the secret key in the PEM format for the given server.
The value engine:name:id can be specified instead of the file (1.7.9), which

loads a secret key with a specified id from the OpenSSL engine name.
The value data:key can be specified instead of the file (1.15.10), which

loads a secret key without using intermediate files. Note that inappropriate
use of this syntax may have its security implications, such as writing secret
key data to error log.

ssl ciphers

Syntax: ssl_ciphers ciphers;

Default HIGH:!aNULL:!MD5

Context: mail, server

Specifies the enabled ciphers. The ciphers are specified in the format
understood by the OpenSSL library, for example:

ssl_ciphers ALL:!aNULL:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

The full list can be viewed using the “openssl ciphers” command.

The previous versions of nginx used different ciphers by default.

ssl client certificate

Syntax: ssl_client_certificate file;

Default —

Context: mail, server
This directive appeared in version 1.7.11.

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates.

The list of certificates will be sent to clients. If this is not desired, the
ssl trusted certificate directive can be used.

Nginx, Inc. p.512 of 563

https://nginx.org/en/docs/http/configuring_https_servers.html#compatibility

CHAPTER 4. MAIL SERVER MODULES 4.5. MODULE NGX MAIL SSL MODULE

ssl conf command

Syntax: ssl_conf_command name value;

Default —

Context: mail, server
This directive appeared in version 1.19.4.

Sets arbitrary OpenSSL configuration commands.

The directive is supported when using OpenSSL 1.0.2 or higher.

Several ssl_conf_command directives can be specified on the same level:

ssl_conf_command Options PrioritizeChaCha;
ssl_conf_command Ciphersuites TLS_CHACHA20_POLY1305_SHA256;

These directives are inherited from the previous configuration level if and
only if there are no ssl_conf_command directives defined on the current
level.

Note that configuring OpenSSL directly might result in unexpected
behavior.

ssl crl

Syntax: ssl_crl file;

Default —

Context: mail, server
This directive appeared in version 1.7.11.

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify client certificates.

ssl dhparam

Syntax: ssl_dhparam file;

Default —

Context: mail, server
This directive appeared in version 0.7.2.

Specifies a file with DH parameters for DHE ciphers.
By default no parameters are set, and therefore DHE ciphers will not be

used.

Prior to version 1.11.0, builtin parameters were used by default.

ssl ecdh curve

Syntax: ssl_ecdh_curve curve;

Default auto

Context: mail, server

Nginx, Inc. p.513 of 563

https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html

CHAPTER 4. MAIL SERVER MODULES 4.5. MODULE NGX MAIL SSL MODULE

This directive appeared in versions 1.1.0 and 1.0.6.

Specifies a curve for ECDHE ciphers.
When using OpenSSL 1.0.2 or higher, it is possible to specify multiple

curves (1.11.0), for example:

ssl_ecdh_curve prime256v1:secp384r1;

The special value auto (1.11.0) instructs nginx to use a list built into the
OpenSSL library when using OpenSSL 1.0.2 or higher, or prime256v1 with
older versions.

Prior to version 1.11.0, the prime256v1 curve was used by default.

When using OpenSSL 1.0.2 or higher, this directive sets the list of curves
supported by the server. Thus, in order for ECDSA certificates to work, it is
important to include the curves used in the certificates.

ssl password file

Syntax: ssl_password_file file;

Default —

Context: mail, server
This directive appeared in version 1.7.3.

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

Example:

mail {
ssl_password_file /etc/keys/global.pass;
...

server {
server_name mail1.example.com;
ssl_certificate_key /etc/keys/first.key;

}

server {
server_name mail2.example.com;

named pipe can also be used instead of a file
ssl_password_file /etc/keys/fifo;
ssl_certificate_key /etc/keys/second.key;

}
}

ssl prefer server ciphers

Syntax: ssl_prefer_server_ciphers on | off;

Default off

Context: mail, server

Nginx, Inc. p.514 of 563

CHAPTER 4. MAIL SERVER MODULES 4.5. MODULE NGX MAIL SSL MODULE

Specifies that server ciphers should be preferred over client ciphers when
the SSLv3 and TLS protocols are used.

ssl protocols

Syntax: ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2]

[TLSv1.3];

Default TLSv1 TLSv1.1 TLSv1.2 TLSv1.3

Context: mail, server

Enables the specified protocols.

The TLSv1.1 and TLSv1.2 parameters (1.1.13, 1.0.12) work only when
OpenSSL 1.0.1 or higher is used.

The TLSv1.3 parameter (1.13.0) works only when OpenSSL 1.1.1 or
higher is used.

The TLSv1.3 parameter is used by default since 1.23.4.

ssl session cache

Syntax: ssl_session_cache off | none | [builtin[:size]]

[shared:name:size];

Default none

Context: mail, server

Sets the types and sizes of caches that store session parameters. A cache
can be of any of the following types:

off
the use of a session cache is strictly prohibited: nginx explicitly tells a
client that sessions may not be reused.

none
the use of a session cache is gently disallowed: nginx tells a client that
sessions may be reused, but does not actually store session parameters
in the cache.

builtin
a cache built in OpenSSL; used by one worker process only. The cache
size is specified in sessions. If size is not given, it is equal to 20480
sessions. Use of the built-in cache can cause memory fragmentation.

shared
a cache shared between all worker processes. The cache size is specified
in bytes; one megabyte can store about 4000 sessions. Each shared cache
should have an arbitrary name. A cache with the same name can be
used in several servers. It is also used to automatically generate, store,
and periodically rotate TLS session ticket keys (1.23.2) unless configured
explicitly using the ssl session ticket key directive.

Nginx, Inc. p.515 of 563

CHAPTER 4. MAIL SERVER MODULES 4.5. MODULE NGX MAIL SSL MODULE

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin:1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more
efficient.

ssl session ticket key

Syntax: ssl_session_ticket_key file;

Default —

Context: mail, server
This directive appeared in version 1.5.7.

Sets a file with the secret key used to encrypt and decrypt TLS session
tickets. The directive is necessary if the same key has to be shared between
multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session
tickets. This allows configuring key rotation, for example:

ssl_session_ticket_key current.key;
ssl_session_ticket_key previous.key;

The file must contain 80 or 48 bytes of random data and can be created
using the following command:

openssl rand 80 > ticket.key

Depending on the file size either AES256 (for 80-byte keys, 1.11.8) or
AES128 (for 48-byte keys) is used for encryption.

ssl session tickets

Syntax: ssl_session_tickets on | off;

Default on

Context: mail, server
This directive appeared in version 1.5.9.

Enables or disables session resumption through TLS session tickets.

ssl session timeout

Syntax: ssl_session_timeout time;

Default 5m

Context: mail, server

Specifies a time during which a client may reuse the session parameters.

Nginx, Inc. p.516 of 563

https://datatracker.ietf.org/doc/html/rfc5077

CHAPTER 4. MAIL SERVER MODULES 4.5. MODULE NGX MAIL SSL MODULE

ssl trusted certificate

Syntax: ssl_trusted_certificate file;

Default —

Context: mail, server
This directive appeared in version 1.7.11.

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates.

In contrast to the certificate set by ssl client certificate, the list of these
certificates will not be sent to clients.

ssl verify client

Syntax: ssl_verify_client on | off | optional | optional_no_ca;

Default off

Context: mail, server
This directive appeared in version 1.7.11.

Enables verification of client certificates. The verification result is passed
in the Auth-SSL-Verify header of the authentication request.

The optional parameter requests the client certificate and verifies it if
the certificate is present.

The optional_no_ca parameter requests the client certificate but does
not require it to be signed by a trusted CA certificate. This is intended for
the use in cases when a service that is external to nginx performs the actual
certificate verification. The contents of the certificate is accessible through
requests sent to the authentication server.

ssl verify depth

Syntax: ssl_verify_depth number;

Default 1

Context: mail, server
This directive appeared in version 1.7.11.

Sets the verification depth in the client certificates chain.

starttls

Syntax: starttls on | off | only;

Default off

Context: mail, server

on
allow usage of the STLS command for the POP3 and the STARTTLS
command for the IMAP and SMTP;

off
deny usage of the STLS and STARTTLS commands;

Nginx, Inc. p.517 of 563

CHAPTER 4. MAIL SERVER MODULES 4.5. MODULE NGX MAIL SSL MODULE

only
require preliminary TLS transition.

Nginx, Inc. p.518 of 563

CHAPTER 4. MAIL SERVER MODULES 4.6. MODULE NGX MAIL IMAP MODULE

4.6 Module ngx mail imap module

4.6.1 Directives . 519
imap auth . 519
imap capabilities . 519
imap client buffer . 520

4.6.1 Directives

imap auth

Syntax: imap_auth method . . . ;

Default plain

Context: mail, server

Sets permitted methods of authentication for IMAP clients. Supported
methods are:

plain
LOGIN, AUTH=PLAIN

login
AUTH=LOGIN

cram-md5
AUTH=CRAM-MD5. In order for this method to work, the password
must be stored unencrypted.

external
AUTH=EXTERNAL (1.11.6).

Plain text authentication methods (the LOGIN command, AUTH=PLAIN,
and AUTH=LOGIN) are always enabled, though if the plain and login
methods are not specified, AUTH=PLAIN and AUTH=LOGIN will not be
automatically included in imap capabilities.

imap capabilities

Syntax: imap_capabilities extension . . . ;

Default IMAP4 IMAP4rev1 UIDPLUS

Context: mail, server

Sets the IMAP protocol extensions list that is passed to the client
in response to the CAPABILITY command. The authentication methods
specified in the imap auth directive and STARTTLS are automatically added
to this list depending on the starttls directive value.

It makes sense to specify the extensions supported by the IMAP backends to
which the clients are proxied (if these extensions are related to commands used
after the authentication, when nginx transparently proxies a client connection
to the backend).

The current list of standardized extensions is published at www.iana.org.

Nginx, Inc. p.519 of 563

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc4616
https://datatracker.ietf.org/doc/html/draft-murchison-sasl-login-00
https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc2595
http://www.iana.org/assignments/imap4-capabilities

CHAPTER 4. MAIL SERVER MODULES 4.6. MODULE NGX MAIL IMAP MODULE

imap client buffer

Syntax: imap_client_buffer size;

Default 4k|8k

Context: mail, server

Sets the size of the buffer used for reading IMAP commands. By default,
the buffer size is equal to one memory page. This is either 4K or 8K, depending
on a platform.

Nginx, Inc. p.520 of 563

CHAPTER 4. MAIL SERVER MODULES 4.7. MODULE NGX MAIL POP3 MODULE

4.7 Module ngx mail pop3 module

4.7.1 Directives . 521
pop3 auth . 521
pop3 capabilities . 521

4.7.1 Directives

pop3 auth

Syntax: pop3_auth method . . . ;

Default plain

Context: mail, server

Sets permitted methods of authentication for POP3 clients. Supported
methods are:

plain
USER/PASS, AUTH PLAIN, AUTH LOGIN

apop
APOP. In order for this method to work, the password must be stored
unencrypted.

cram-md5
AUTH CRAM-MD5. In order for this method to work, the password
must be stored unencrypted.

external
AUTH EXTERNAL (1.11.6).

Plain text authentication methods (USER/PASS, AUTH PLAIN, and AUTH
LOGIN) are always enabled, though if the plain method is not specified,
AUTH PLAIN and AUTH LOGIN will not be automatically included in pop3 -
capabilities.

pop3 capabilities

Syntax: pop3_capabilities extension . . . ;

Default TOP USER UIDL

Context: mail, server

Sets the POP3 protocol extensions list that is passed to the client in
response to the CAPA command. The authentication methods specified in
the pop3 auth directive (SASL extension) and STLS are automatically added
to this list depending on the starttls directive value.

It makes sense to specify the extensions supported by the POP3 backends
to which the clients are proxied (if these extensions are related to commands
used after the authentication, when nginx transparently proxies the client
connection to the backend).

The current list of standardized extensions is published at www.iana.org.

Nginx, Inc. p.521 of 563

https://datatracker.ietf.org/doc/html/rfc1939
https://datatracker.ietf.org/doc/html/rfc4616
https://datatracker.ietf.org/doc/html/draft-murchison-sasl-login-00
https://datatracker.ietf.org/doc/html/rfc1939
https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2449
https://datatracker.ietf.org/doc/html/rfc2449
https://datatracker.ietf.org/doc/html/rfc2595
http://www.iana.org/assignments/pop3-extension-mechanism

CHAPTER 4. MAIL SERVER MODULES 4.8. MODULE NGX MAIL SMTP MODULE

4.8 Module ngx mail smtp module

4.8.1 Directives . 522
smtp auth . 522
smtp capabilities . 522
smtp client buffer . 523
smtp greeting delay . 523

4.8.1 Directives

smtp auth

Syntax: smtp_auth method . . . ;

Default plain login

Context: mail, server

Sets permitted methods of SASL authentication for SMTP clients.
Supported methods are:

plain
AUTH PLAIN

login
AUTH LOGIN

cram-md5
AUTH CRAM-MD5. In order for this method to work, the password
must be stored unencrypted.

external
AUTH EXTERNAL (1.11.6).

none
Authentication is not required.

Plain text authentication methods (AUTH PLAIN and AUTH LOGIN) are
always enabled, though if the plain and login methods are not specified,
AUTH PLAIN and AUTH LOGIN will not be automatically included in smtp -
capabilities.

smtp capabilities

Syntax: smtp_capabilities extension . . . ;

Default —

Context: mail, server

Sets the SMTP protocol extensions list that is passed to the client in
response to the EHLO command. The authentication methods specified in
the smtp auth directive and STARTTLS are automatically added to this list
depending on the starttls directive value.

It makes sense to specify the extensions supported by the MTA to which
the clients are proxied (if these extensions are related to commands used after

Nginx, Inc. p.522 of 563

https://datatracker.ietf.org/doc/html/rfc2554
https://datatracker.ietf.org/doc/html/rfc4616
https://datatracker.ietf.org/doc/html/draft-murchison-sasl-login-00
https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc3207

CHAPTER 4. MAIL SERVER MODULES 4.8. MODULE NGX MAIL SMTP MODULE

the authentication, when nginx transparently proxies the client connection to
the backend).

The current list of standardized extensions is published at www.iana.org.

smtp client buffer

Syntax: smtp_client_buffer size;

Default 4k|8k

Context: mail, server

Sets the size of the buffer used for reading SMTP commands. By default,
the buffer size is equal to one memory page. This is either 4K or 8K, depending
on a platform.

smtp greeting delay

Syntax: smtp_greeting_delay time;

Default 0

Context: mail, server

Allows setting a delay before sending an SMTP greeting in order to reject
clients who fail to wait for the greeting before sending SMTP commands.

Nginx, Inc. p.523 of 563

http://www.iana.org/assignments/mail-parameters

Chapter 5

Miscellaneous

5.1 Command-line parameters

5.1.1 Overview . 524

5.1.1 Overview

nginx supports the following command-line parameters:

• -? | -h — print help for command-line parameters.

• -c file — use an alternative configuration file instead of a default file.

• -e file — use an alternative error log file to store the log instead of
a default file (1.19.5). The special value stderr selects the standard
error file.

• -g directives — set global configuration directives, for example,

nginx -g "pid /var/run/nginx.pid; worker_processes ‘sysctl -n hw.ncpu‘;"

• -p prefix — set nginx path prefix, i.e. a directory that will keep
server files (default value is /usr/local/nginx).

• -q — suppress non-error messages during configuration testing.

• -s signal — send a signal to the master process. The argument signal
can be one of:

– stop — shut down quickly

– quit — shut down gracefully

– reload — reload configuration, start the new worker process with
a new configuration, gracefully shut down old worker processes.

– reopen — reopen log files

• -t — test the configuration file: nginx checks the configuration for
correct syntax, and then tries to open files referred in the configuration.

524

CHAPTER 5. MISCELLANEOUS 5.1. COMMAND-LINE PARAMETERS

• -T — same as -t, but additionally dump configuration files to standard
output (1.9.2).

• -v — print nginx version.

• -V — print nginx version, compiler version, and configure parameters.

Nginx, Inc. p.525 of 563

CHAPTER 5. MISCELLANEOUS 5.2. MODULE NGX MGMT MODULE

5.2 Module ngx mgmt module

5.2.1 Summary . 526
5.2.2 Example Configuration 526
5.2.3 Directives . 527

mgmt . 527
enforce initial report . 527
license token . 527
resolver . 527
ssl crl . 528
ssl trusted certificate . 528
ssl verify . 528
state path . 528
usage report . 529

5.2.1 Summary

The ngx_mgmt_module module enables nginx license verification and
usage reporting. This is mandatory for each nginx/1.27.2 (nginx-
plus-r33) instance.

A JWT license file named license.jwt should be located at /etc/
nginx/ for Linux or /usr/local/etc/nginx/ for FreeBSD or at the path
specified by the license token directive. The license file is available from MyF5.

Usage report is sent to F5 licensing endpoint every hour using the secure
connection. Optionally, in network-restricted environments reporting can be
configured to F5 NGINX Instance Manager from which the report can be sent
to F5 licensing endpoint.

The initial usage report is sent once nginx starts after installing R33. If the
initial usage report is not received by F5 licensing endpoint, nginx will stop
processing traffic.

This module is available as part of our commercial subscription.

5.2.2 Example Configuration

mgmt {

in case if custom path is required
license_token custom/file/path/license.jwt;

in case of reporting to NGINX Instance Manager
usage_report endpoint=NIM_FQDN;

}

Nginx, Inc. p.526 of 563

https://docs.nginx.com/nginx/releases/#nginxplusrelease-33-r33
https://docs.nginx.com/nginx/releases/#nginxplusrelease-33-r33
https://account.f5.com/myf5
https://docs.nginx.com/nginx-management-suite/about/
https://nginx.com/products/

CHAPTER 5. MISCELLANEOUS 5.2. MODULE NGX MGMT MODULE

5.2.3 Directives

mgmt

Syntax: mgmt { . . . }
Default —

Context: main

Provides the configuration file context in which the management server
directives are specified.

enforce initial report

Syntax: enforce_initial_report on | off;

Default on

Context: mgmt
This directive appeared in version 1.27.2.

Enables or disables the 180-day grace period for sending the initial usage
report.

By default, the initial usage report is sent immediately upon nginx first
start after installation or upgrade to R33. If the initial report is not received by
F5 licensing endpoint, nginx stops processing user traffic. Normal operations
resume once the report is received. Setting the directive value to off enables
the 180-day grace period during which the initial usage report must be received
by F5 licensing endpoint.

license token

Syntax: license_token file;

Default license.jwt

Context: mgmt
This directive appeared in version 1.27.2.

Specifies a JWT license file. By default, the license.jwt file is expected to be
at /etc/nginx/ for Linux or at /usr/local/etc/nginx/ for FreeBSD.

resolver

Syntax: resolver address . . . [valid=time] [ipv4=on|off] [ipv6=on|off]

[status_zone=zone];

Default —

Context: mgmt

Configures name servers used to resolve names of the license reporting
endpoint into addresses, for example:

resolver 127.0.0.1 [::1]:5353;

The address can be specified as a domain name or IP address, with an
optional port. If port is not specified, the port 53 is used. Name servers are

Nginx, Inc. p.527 of 563

CHAPTER 5. MISCELLANEOUS 5.2. MODULE NGX MGMT MODULE

queried in a round-robin fashion. By default, the system resolver is used and
is invoked only once when the configuration is loaded.

By default, nginx will look up both IPv4 and IPv6 addresses while resolving.
If looking up of IPv4 or IPv6 addresses is not desired, the ipv4=off or the
ipv6=off parameter can be specified.

By default, nginx caches answers using the TTL value of a response. An
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid=30s;

To prevent DNS spoofing, it is recommended configuring DNS servers in
a properly secured trusted local network.

The optional status_zone parameter enables collection of DNS server
statistics of requests and responses in the specified zone.

ssl crl

Syntax: ssl_crl file;

Default —

Context: mgmt

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify the certificate of the usage reporting endpoint.

ssl trusted certificate

Syntax: ssl_trusted_certificate file;

Default system CA bundle

Context: mgmt

Specifies a file with trusted CA certificates in the PEM format used to
verify the certificate of the usage reporting endpoint.

ssl verify

Syntax: ssl_verify on | off;

Default on

Context: mgmt

Enables or disables verification of the usage reporting endpoint certificate.

Before 1.27.2, the default value was off.

state path

Syntax: state_path path;

Default —

Context: mgmt

Nginx, Inc. p.528 of 563

CHAPTER 5. MISCELLANEOUS 5.2. MODULE NGX MGMT MODULE

This directive appeared in version 1.27.2.

Defines a directory for storing state persistence files created by the ngx_-
mgmt_module module. The default directory for Linux is /var/lib/
nginx/state, for FreeBSD is /var/db/nginx/state.

usage report

Syntax: usage_report [endpoint=address] [interval=time];

Default endpoint=product.connect.nginx.com interval=1h

Context: mgmt

Sets the address and port of the usage reporting endpoint. The interval
parameter sets an interval between two consecutive reports.

Before 1.27.2, the default values were nginx-mgmt.local and 30m.

Nginx, Inc. p.529 of 563

CHAPTER 5. MISCELLANEOUS 5.3. MODULE NGX OTEL MODULE

5.3 Module ngx otel module

5.3.1 Summary . 530
5.3.2 Example Configuration 530
5.3.3 Directives . 531

otel exporter . 531
otel service name . 531
otel trace . 531
otel trace context . 532
otel span name . 532
otel span attr . 532

5.3.4 Default span attributes 532
5.3.5 Embedded Variables . 533

5.3.1 Summary

The ngx_otel_module module (1.23.4) provides OpenTelemetry
distributed tracing support. The module supports W3C context propagation
and OTLP/gRPC export protocol.

The source code of the module is available here. Download and install
instructions are available here.

The module is also available in a prebuilt nginx-module-otel package
since 1.25.3 and in nginx-plus-module-otel package as part of our
commercial subscription.

5.3.2 Example Configuration

load_module modules/ngx_otel_module.so;

events {
}

http {

otel_exporter {
endpoint localhost:4317;

}

server {
listen 127.0.0.1:8080;

location / {
otel_trace on;
otel_trace_context inject;

proxy_pass http://backend;
}

}
}

Nginx, Inc. p.530 of 563

https://opentelemetry.io
https://w3c.github.io/trace-context
https://github.com/nginxinc/nginx-otel
https://github.com/nginxinc/nginx-otel/blob/main/README.md
https://nginx.com/products/

CHAPTER 5. MISCELLANEOUS 5.3. MODULE NGX OTEL MODULE

5.3.3 Directives

otel exporter

Syntax: otel_exporter { . . . }
Default —

Context: http

Specifies OTel data export parameters:

endpoint
the address of OTLP/gRPC endpoint that will accept telemetry data.

interval
the maximum interval between two exports, by default is 5 seconds.

batch_size
the maximum number of spans to be sent in one batch per worker, by
default is 512.

batch_count
the number of pending batches per worker, spans exceeding the limit are
dropped, by default is 4.

Example:

otel_exporter {
endpoint localhost:4317;
interval 5s;
batch_size 512;
batch_count 4;

}

otel service name

Syntax: otel_service_name name;

Default unknown_service:nginx

Context: http

Sets the “service.name” attribute of the OTel resource.

otel trace

Syntax: otel_trace on | off | $variable;

Default off

Context: http, server, location

Enables or disables OpenTelemetry tracing. The directive can also be
enabled by specifying a variable:

split_clients "$otel_trace_id" $ratio_sampler {
10% on;

* off;
}

server {

Nginx, Inc. p.531 of 563

https://opentelemetry.io/docs/reference/specification/resource/semantic_conventions/#service

CHAPTER 5. MISCELLANEOUS 5.3. MODULE NGX OTEL MODULE

location / {
otel_trace $ratio_sampler;
otel_trace_context inject;
proxy_pass http://backend;

}
}

otel trace context

Syntax: otel_trace_context extract | inject | propagate | ignore;

Default ignore

Context: http, server, location

Specifies how to propagate traceparent/tracestate headers:

extract
uses an existing trace context from the request, so that the identifiers of
a trace and the parent span are inherited from the incoming request.

inject
adds a new context to the request, overwriting existing headers, if any.

propagate
updates the existing context (combines extract and inject).

ignore
skips context headers processing.

otel span name

Syntax: otel_span_name name;

Default —

Context: http, server, location

Defines the name of the OTel span. By default, it is a name of the location
for a request. The name can contain variables.

otel span attr

Syntax: otel_span_attr name value;

Default —

Context: http, server, location

Adds a custom OTel span attribute. The value can contain variables.

5.3.4 Default span attributes

The following span attributes are added automatically:

• http.method

• http.target

• http.route

Nginx, Inc. p.532 of 563

https://www.w3.org/TR/trace-context/#design-overview
https://opentelemetry.io/docs/concepts/observability-primer/#spans
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/semantic_conventions/http.md

CHAPTER 5. MISCELLANEOUS 5.3. MODULE NGX OTEL MODULE

• http.scheme

• http.flavor

• http.user_agent

• http.request_content_length

• http.response_content_length

• http.status_code

• net.host.name

• net.host.port

• net.sock.peer.addr

• net.sock.peer.port

5.3.5 Embedded Variables

$otel trace id
the identifier of the trace the current span belongs to, for example,
56552bc4daa3bf39c08362527e1dd6c4

$otel span id
the identifier of the current span, for example, 4c0b8531ec38ca59

$otel parent id
the identifier of the parent span, for example, dc94d281b0f884ea

$otel parent sampled
the “sampled” flag of the parent span, can be “1” or “0”

Nginx, Inc. p.533 of 563

Appendix A

Changelog for NGINX Plus

This appendix contains the most important changes that may apply to both NGINX Plus
and nginx/OSS. Full changelog for nginx/OSS is available in the packages and by the
following link: https://nginx.org/en/CHANGES

• NGINX Plus R33 (1.27.2), released October 29, 2024

– Licensing: now each NGINX Plus instance requires a JWT license file. The
license file can be obtained from MyF5 and is expected to be located at
/etc/nginx/ for Linux or /usr/local/etc/nginx/ for FreeBSD or at
the path specified by the license token directive in the mgmt context.

– NGINX usage reporting: accumulated usage report is sent to F5 reporting
endpoint every hour using the secure connection. The fist usage report should
be sent once nginx starts after installation or upgrade to R33. If the initial
usage report is not received by F5 reporting endpoint, nginx will stop
processing user traffic. A 180-day grace period can be enabled to submit the
initial usage report, and normal operations resume once the report is received.
Optionally, for network-restricted environments, reporting can be configured
to F5 NGINX Instance Manager from which the report can be sent to to F5
reporting endpoint.

– OCSP stapling support and client certificate validation with OCSP in the
stream module with the ssl_ocsp and ssl_ocsp_responder directives.

– Response trailers support in proxy with the proxy_pass_trailers
directive that allows passing trailer fields from a proxied server to a client.

– SSL Key Logging with the ssl_key_log, proxy_ssl_key_log,
grpc_ssl_key_log, and uwsgi_ssl_key_log directives that allow
logging SSL keys created during client and upstream connections to file. The
argument is file name in SSLKEYLOGFILE format.

– Change: now the ssl_client_certificate directive is not required for
client SSL certificates verification.

• NGINX Plus R32 (1.25.5), released May 29, 2024

– SSL certificate caching that improves the NGINX reload time and memory
usage in cases of configurations with large number of locations with relatively
small number of unique certificate/key pairs

– The stream pass module that allows passing the accepted connection directly
to any configured listening socket in http, stream, mail, and other similar
modules

– NGINX Plus official container images

– The ModSecurity WAF module (package name is
nginx-plus-module-modsecurity) reached end of support and is no
longer available

– Virtual servers in the stream module

534

https://nginx.org/en/CHANGES
https://docs.nginx.com/nginx-management-suite/about/
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-docker/
https://docs.nginx.com/nginx/admin-guide/dynamic-modules/nginx-waf/

APPENDIX A. CHANGELOG FOR NGINX PLUS

– The deferred, accept_filter, and setfib parameters of the listen
directive in the stream module

– Cache line size detection for some architectures

– Support for Homebrew on Apple Silicon

– Security fixes:

∗ Heap Overflow w/ write (CVE-2024-32760): Undisclosed HTTP/3
encoder instructions can cause NGINX worker processes to terminate or
cause other possible impacts

∗ Stack Overflow / Use after free (CVE-2024-31079): Undisclosed HTTP/3
requests can cause NGINX worker processes to terminate or cause other
possible impacts. This attack requires that a request be specifically
timed during the connection draining process, which the attacker has no
visibility and limited influence over

∗ Null Pointer Dereference w/ Empty Header (CVE-2024-35200):
Undisclosed HTTP/3 requests can cause NGINX worker processes to
terminate or cause other possible impacts

∗ Memory Disclosure during QUIC handshake (CVE-2024-34161): When
the network infrastructure supports a Maximum Transmission Unit
(MTU) of 4096 or greater without fragmentation, undisclosed QUIC
messages can cause NGINX worker processes to terminate or cause
leakage of previously freed memory

– Bugfixes:

∗ in the MQTT module: malformed packets when using default properties
∗ in the zone sync module: memory leak on configuration reload and

potential resource leak in resolver
∗ Windows cross-compilation bugfixes and improvements
∗ Unexpected connection closure while using 0-RTT in QUIC
∗ Connections with pending AIO operations might be closed prematurely

during graceful shutdown of old worker processes
∗ Socket leak alerts no longer logged when fast shutdown was requested

after graceful shutdown of old worker processes
∗ A socket descriptor error, a socket leak, or a segmentation fault in a

worker process (for SSL proxying) might occur if AIO was used in a
subrequest

∗ A segmentation fault might occur in a worker process if SSL proxying
was used along with the image filter directive and errors with code 415
were redirected with the error page directive

∗ Bugfixes and improvements in HTTP/3

– New features in njs:

∗ the Server header for outgoing header can be set
∗ added QuickJS engine support in CLI

• NGINX Plus R31 (1.25.3), released December 19, 2023

– Native usage reporting of NGINX Plus to NGINX Instance Manager provided
by the ngx mgmt module module

– The $upstream last server name variable that keeps the name of the last
selected upstream server and allows passing it to the proxied server through
SNI

– Notable startup speedup when using a large number of locations

– HTTP/3 features and bugfixes:

∗ Path MTU Discovery (PMTUD) feature

∗ support for TLS_AES_128_CCM_SHA256 cipher suite
∗ support for server tokens with variables
∗ various bugfixes and improvements

– New features in njs:

Nginx, Inc. p.535 of 563

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-32760
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-31079
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-35200
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-34161

APPENDIX A. CHANGELOG FOR NGINX PLUS

∗ the js_periodic directive for http and stream that allows specifying a
JS handler to run at regular intervals

∗ the Console object: error(), info(), log(), time(), timeEnd(),
warn() methods

∗ the fs module: the fs.existsSync() method
∗ shared dictionary: the items() method

– MQTT bugfixes and improvements:

∗ the CONNECT message was rejected when a password was not provided
∗ the CONNECT message parsing is stopped when the message length is less

than the number of bytes received
∗ added the Will topic and Will payload for MQTT Version 3.1.1 if the
CONNECT message is rewritten

– Various bugfixes and improvements:

∗ the Status response header line with an empty reason phrase from the
backend was handled incorrectly

∗ memory leak during reconfiguration when using the PCRE2 library

∗ improved detection of misbehaving clients when using HTTP/2

– The OpenTracing dynamic module (package name is
nginx-plus-module-opentracing) is deprecated, the OTel dynamic
module (package name is nginx-plus-module-otel) incorporates the
functionality of the OpenTracing module and should be used instead.

• NGINX Plus R31 P2, released May 29, 2024

Security fixes:

– Heap Overflow w/ write (CVE-2024-32760): Undisclosed HTTP/3 encoder
instructions can cause NGINX worker processes to terminate or cause other
possible impacts

– Stack Overflow / Use after free (CVE-2024-31079): Undisclosed HTTP/3
requests can cause NGINX worker processes to terminate or cause other
possible impacts. This attack requires that a request be specifically timed
during the connection draining process, which the attacker has no visibility
and limited influence over

– Null Pointer Dereference w/ Empty Header (CVE-2024-35200): Undisclosed
HTTP/3 requests can cause NGINX worker processes to terminate or cause
other possible impacts

– Memory Disclosure during QUIC handshake (CVE-2024-34161): When the
network infrastructure supports a Maximum Transmission Unit (MTU) of
4096 or greater without fragmentation, undisclosed QUIC messages can cause
NGINX worker processes to terminate or cause leakage of previously freed
memory

• NGINX Plus R31 P1, released February 14, 2024

– Security: a segmentation fault might occur in a worker process if HTTP/3
was used (CVE-2024-24989, CVE-2024-24990)

– Management module: fixed a potential crash that might happen while using a
system resolver

• NGINX Plus R30 (1.25.1), released August 15, 2023

– Native support for HTTP/3 and QUIC

– API version 9 update:

∗ Per-worker connection statistics

– The njs-prometheus-module now supports version 9 of the API

– DNS reload optimization: now DNS name expiry time for
dynamically-resolved upstream hosts is preserved across reloads

Nginx, Inc. p.536 of 563

https://docs.nginx.com/nginx/admin-guide/dynamic-modules/opentracing/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-32760
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-31079
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-35200
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-34161
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-24989
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-249990

APPENDIX A. CHANGELOG FOR NGINX PLUS

– The new mqtt buffers directive in the MQTT Filter module that specifies the
number of buffers allocated per connection, the directive also supersedes the
mqtt rewrite buffer size directive

– The ssl directive deprecated in NGINX Plus Release 16 and nginx/OSS 1.15.0
was removed, the ssl parameter of the listen directive should be used instead

– The new http2 directive obsoletes the http2 parameter of the listen directive
which is now deprecated

– HTTP/2 server push removed, the http2 push http2 push preload
http2 max concurrent pushes directives are made obsolete

– Optional NGINX diagnostic scripts that collect the data required for
troubleshooting are available as a separate download package

– New features in njs:

∗ global NGINX properties: ngx.build, ngx.conf_file_path,
ngx.error_log_path, ngx.prefix, ngx.version,
ngx.version_number, ngx.worker_id

∗ the js_shared_dict_zone directive for http and stream that allows
declaring a dictionary shared between worker processes

∗ ES13-compliant Array methods: Array.from(),
Array.prototype.toSorted(),
Array.prototype.toSpliced(),
Array.prototype.toReversed()

∗ CryptoKey properties in WebCrypto API. The following properties were
added: algorithm, extractable, type, usages

– The GeoIP2 module is no longer available for Amazon Linux 2 as the EPEL
repository doesn’t provide the libmaxminddb library required to build the
module.

• NGINX Plus R30 P1 (1.25.1), released Oct 11, 2023

– Additional protection against HTTP/2 Rapid Reset Attack vulnerability
CVE-2023-44487 that may affect NGINX only when it is configured with
keepalive requests substantially higher than the default value. Limitations in
HTTP/2 protocol allow clients to produce a higher RPS rate than expected
from a configured HTTP/2 max concurrent streams value which can be
exploited to trigger a Denial-of-Service attack.

• NGINX Plus R29 (1.23.4), released May 3, 2023

– HTTP/3 and QUIC support in separate experimental packages (package name
is nginx-plus-http3).

– MQTT Preread and MQTT Filter modules that add MQTT support.

– New dynamic module: OTel that adds OpenTelemetry distributed tracing
support (package name is nginx-plus-module-otel)

– SAML Authentication reference implementation based on native njs XML
support.

– TLS v1.3 is enabled by default in the ssl protocols directive

– The internal redirect module that allows internal redirects after checking
request and connection processing limits, and access limits.

– New features in njs: extended Fetch API and WebCrypto API, XML
module to parse and modify XML documents, Zlib module to support
compression.

– The njs-prometheus-module now supports version 8 of the API,
including SSL extended statistics for each HTTP upstream and stream
upstream, SSL extended statistics for each HTTP server zone and stream
server zone, and extended statistics for SSL.

• NGINX Plus R29 P1 (1.23.4), released Oct 11, 2023

Nginx, Inc. p.537 of 563

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-44487

APPENDIX A. CHANGELOG FOR NGINX PLUS

– Additional protection against HTTP/2 Rapid Reset Attack vulnerability
CVE-2023-44487 that may affect NGINX only when it is configured with
keepalive requests substantially higher than the default value. Limitations in
HTTP/2 protocol allow clients to produce a higher RPS rate than expected
from a configured HTTP/2 max concurrent streams value which can be
exploited to trigger a Denial-of-Service attack.

• NGINX Plus R28 (1.23.2), released November 29, 2022

– API version 8 update:

∗ SSL extended statistics for each HTTP upstream and stream upstream
∗ SSL extended statistics for each HTTP server zone and stream server

zone
∗ Extended statistics for SSL

– PROXY protocol v2 TLV variables for Amazon Web Services, Google Cloud
Platform, and Microsoft Azure in HTTP and stream

– The proxy_protocol_tlv_ variable for HTTP and stream

– Variables support for sticky cookie samesite flag in the HTTP upstream
module

– Nginx Plus Dashboard now support extended HTTP codes and extended SSL
counters

– TLS session tickets encryption keys are now automatically rotated when using
shared memory in the ssl session cache directive

– Looking up of IPv4 addresses while resolving now can be disabled with the
ipv4=off parameter of the resolver directive

– Processing of a specially crafted mp4 file by the ngx http mp4 module might
cause a worker process crash, worker process memory disclosure, or might
have potential other impact (CVE-2022-41741, CVE-2022-41742)

• NGINX Plus R27 (1.21.6), released June 28, 2022

– API version 8:

∗ SSL statistics for each HTTP upstream and stream upstream
∗ SSL statistics for each HTTP server zone and stream server zone

– HTTP health checks: introduced the keepalive time parameter of the
health check directive that enables keepalive connections for health checks and
specifies the time during which requests can be processed through one
keepalive connection

– JWT Authentication: error code can be customized with the error
parameter of the auth jwt require directive if any additional condition of
JWT validation fails

– The njs-prometheus-module now supports version 7 of the API,
including /stream/limit_conns/, /http/limit_conns/,
/http/limit_req/ data, and HTTP status code statistics for upstreams,
server zones, and location zones

• NGINX Plus R27 P1 Bug-fix Update released Oct 19, 2022

– In HLS (CVE-2022-41743) and MP4 (CVE-2022-41741) modules when
processing specially crafted video files a memory corruption, or a memory
disclosure in MP4 module (CVE-2022-41742) could happen.

• NGINX Plus R26 (1.21.5), released Feb 15, 2022

– JWT key caching with the auth jwt key cache directive

– Enhanced ALPN support with the ssl alpn directive for stream, and the
$ssl_alpn_protocol variable for HTTP and stream

Nginx, Inc. p.538 of 563

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-44487
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41743
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41741
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41742

APPENDIX A. CHANGELOG FOR NGINX PLUS

– The $ssl curve variable that returns the negotiated curve used for SSL
handshake key exchange process

– The proxy half close directive for stream that allows closing one side of a
connection while the data is still transmitted

– The mp4 start key frame directive in the MP4 module that forces a video to
always start with a key frame

• NGINX Plus R26 P1 Bug-fix Update released Oct 19, 2022

– In HLS (CVE-2022-41743) and MP4 (CVE-2022-41741) modules when
processing specially crafted video files a memory corruption, or a memory
disclosure in MP4 module (CVE-2022-41742) could happen.

• NGINX Plus R25 (1.21.3), released Sep 21, 2021

– JWT authentication:

∗ support for signed and then encrypted Nested JWT with the nested
parameter of the auth jwt type directive

∗ additional conditions for JWT validation can be specified with the
auth jwt require directive

∗ the $jwt payload variable that returns either enclosed JWS token for
Nested JWT, or JSON with claims for JWE

∗ multiple sources of JSON Web Key Sets can be specified in
auth jwt key file and auth jwt key request directives

∗ asymmetric RSA-OAEP cryptographic algorithms for JWE

– API version 7: HTTP status code statistics are now collected per-code, in
addition to aggregation per-class, for upstreams, server zones, and location
zones.

– Stream health checks: introduced the persistent parameter of the
health check directive that enables persistence to mandatory health checks
after reload.

– TCP Fast Open support with the fastopen parameter of the listen directive
in the stream module.

– Mail proxy:

∗ the number of errors before closing the connection can be specified with
the max errors directive to mitigate against ALPACA attack

∗ support for POP3 and IMAP pipelining
∗ the Auth-SSL-Protocol and Auth-SSL-Cipher header lines are

now passed to the mail proxy authentication server

– Security hardening of HTTP request parsing. NGINX Plus will return an
error if:

∗ spaces or control characters are found in the request line, header names,
or the Host request header line

∗ the CONNECT method is used
∗ both Content-Length and Transfer-Encoding header lines are

present in the request

– Request body filters API now permits buffering of the data being processed.

– Added support for dynamic SSL certificate loading for http, grpc and uwsgi
backends.

• NGINX Plus R25 P1 Bug-fix Update released Dec 14, 2021

– Swagger UI updated to version 4.1.2

– Fixed a crash that might happen when an upstream server was updated via
the API

• NGINX Plus R24 (1.19.10), released Apr 27, 2021

Nginx, Inc. p.539 of 563

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41743
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41741
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-41742

APPENDIX A. CHANGELOG FOR NGINX PLUS

– Added support for JSON Web Encryption to the JSON Web Token
authorization module (the auth jwt type directive).

– HTTP health checks: introduced the persistent parameter of the
health check directive that enables persistence to mandatory health checks
after reload.

– Flags in the proxy cookie flags directive can now contain variables.

– Added PROXY protocol support for mail (the proxy_protocol parameter
of the listen directive, the proxy protocol and set real ip from directives).

– If free worker connections are exhausted, NGINX Plus starts closing not only
keepalive connections, but also connections in lingering close.

– The maximum duration of a persistent connection can be limited with the
keepalive_time directive for http and upstream servers.

– New variable, $connection time, contains connection time.

• NGINX Plus R24 P2 Bug-fix Update released Dec 14, 2021

– Swagger UI updated to version 4.1.2

• NGINX Plus R24 P1 Bug-fix Update released May 18, 2021

– Resolver: an issue in NGINX resolver may allow an attacker who is able to
forge UDP packets from the specified DNS server to cause a 1-byte memory
overwrite, resulting in a worker process interruption or other unspecified
impact (CVE-2021-23017)

• NGINX Plus R23 (1.19.5), released Dec 8, 2020

– gRPC health checks: introduced the type=grpc parameter in the
health check directive that enables active health checks of gRPC upstream
servers.

– Sticky cookie now can accept the SameSite attribute with Strict, Lax,or
None values.

– Support for cookie flags with the proxy cookie flags and userid flags directives.

– Introduced script that performs unprivileged installation of NGINX Plus.

– New command-line switch to redefine an error log file: -e.

– New set directive for stream that allows setting a value for a variable.

– Added support for arbitrary OpenSSL configuration commands with the
ssl conf command directive.

– The ssl reject handshake directive that allows rejecting the SSL handshake in
the server block.

– Support for user authentication on the SMTP backend in mail proxy.

– Cache manager improved to monitor the minimum amount of free space (see
the min_free parameter of the proxy cache path directive).

• NGINX Plus R23 P1 Bug-fix Update released May 18, 2021

– Resolver: an issue in NGINX resolver may allow an attacker who is able to
forge UDP packets from the specified DNS server to cause a 1-byte memory
overwrite, resulting in a worker process interruption or other unspecified
impact (CVE-2021-23017)

• NGINX Plus R22 (1.19.0), released Jun 9, 2020

– Client certificate validation with OCSP.

– Unauthorized requests can now be delayed with the auth delay directive.

Nginx, Inc. p.540 of 563

http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt
https://support.f5.com/csp/article/K12331123
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23017
https://docs.nginx.com/nginx/admin-guide/installing-nginx#unpriv_install
https://www.openssl.org/docs/man1.1.1/man3/SSL_CONF_cmd.html
https://support.f5.com/csp/article/K12331123
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23017

APPENDIX A. CHANGELOG FOR NGINX PLUS

– Updated status dashboard with new visualizations of limit conn and limit req
statistics.

• NGINX Plus R21 (1.17.9), released Apr 7, 2020

– The grpc pass directive can now contain variables.

• NGINX Plus R20 (1.17.6), released Dec 3, 2019

– Key-value storage: added support for matching a key based on a substring
(the type parameter of the keyval zone directive was extended with the
prefix option).

– DNS resolvers can now be specified in upstream context.

– Rate limiting: the $limit req status variable keeps the result of limiting a
request processing rate. Corresponding metrics are available through the
/http/limit_reqs/ endpoint in the API module.

– The connection limiting facility now has dry run mode. The
$limit conn status variable keeps the result of limiting a number of
connections. Correponding metrics are available through the
/http/limit_conns/ endpoint in the API module.

– Additional variables were introduced to keep original IP address and port of
the server that a client originally connected to when PROXY protocol was
used: $proxy protocol server addr, $proxy protocol server port.

• NGINX Plus R19 (1.17.3), released Sep 3, 2019

– Metrics provided by the status zone directive can now be collected per
location.

– A set of metrics related to DNS resolver functionality is now available (the
status_zone parameter of the resolver directive).

– The request limiting facility now has dry run mode.

– Key-value storage now has optimized mode for storing IP addresses in CIDR
notation (the type parameter of the keyval zone directive).

– Each key-value pair can now have its own custom expiration timer, either set
at creation time for new entry, or modified for existing entry.

– The limit rate and limit rate after directives can now contain variables.

– The proxy download rate and proxy upload rate directives can now contain
variables.

– Updated status dashboard with new visualizations for per-location statistic,
resolver metrics, and zone sync status.

• NGINX Plus R18 (1.15.10), released Apr 9, 2019

– Added support for dynamic SSL certificate loading, either from file or from
key-value storage (variable should be prefixed with data: for the latter case).

– Active health checks extended with additional logic of verifying arbitrary
variables (the require parameter of the match directive).

– Clustering enhancement: a single zone sync configuration can now be used for
all instances in a cluster with the help of wildcard support in the listen
directive.

– Port ranges can now be used in the listen directive.

– Stream proxy: added an ability to explicitly close existing connections to the
particular upstream server after it was removed from the group due to health
check failure, API call, or re-resolve action (the proxy session drop directive).

– New variable, $upstream bytes sent, contains number of bytes sent to an
upstream server.

Nginx, Inc. p.541 of 563

APPENDIX A. CHANGELOG FOR NGINX PLUS

• NGINX Plus R18 P1 Bug-fix Update released Aug 06, 2019

– Security patch: When using HTTP/2 a client might cause excessive memory
consumption and CPU usage (CVE-2019-9511, CVE-2019-9513,
CVE-2019-9516)

• NGINX Plus R17 (1.15.7), released Dec 11, 2018

– Added support for TLS v1.3 early data. Check out the $ssl early data variable
which can be used to protect against replay attacks at the application layer.

– Introduced two-stage rate limiting (the delay parameter of the limit req
directive).

– Added support for retrieving JSON Web Key (JWK) set from a subrequest.

– Added support for the Ed25519 and Ed448 cryptographic algorithms to the
JSON Web Token authorization module.

– Added an option to enable TCP keepalives for outgoing connections to
proxied servers (the proxy socket keepalive and friends).

– Fine-grained control over persistent connections to upstreams with the
keepalive timeout and keepalive requests directives.

– Added ability to restrict UDP session to a particular number of packets with
the proxy requests directive.

• NGINX Plus R16 (1.15.2), released Sep 5, 2018

– IMPORTANT: status and upstream conf modules deprecated since R13 were
finally removed in favor to the API module.

– Shared zones synchronization extended to support keyval and limit req
modules.

– Key-value pairs can now be expired after configured timeout (the timeout
parameter of the keyval zone directive).

– Introduced new load balancing algorithm: random with two choices (optional).

– UDP load balancing extended to support multiple incoming datagrams from a
client within a single session, thus allowing to proxy/load balance of more
complex applications.

– Added support for PROXY protocol version 2 in HTTP and stream modules.

– New variable, $ssl preread protocol, of stream module contains the highest
SSL protocol version supported by the client.

• NGINX Plus R16 P1 Bug-fix Update released Oct 30, 2018

– Security patch: When using HTTP/2 a client might cause excessive memory
consumption (CVE-2018-16843) and CPU usage (CVE-2018-16844)

– Security patch: Processing of a specially crafted mp4 file with the
ngx http mp4 module might result in worker process memory disclosure
(CVE-2018-16845)

• NGINX Plus R15 (1.13.10), released Apr 10, 2018

– Added gRPC proxy support.

– Added HTTP/2 push support.

– Introduced shared zone synchronization between NGINX Plus nodes.
Currently, it is possible to synchronize sticky sessions when using learn
method.

Nginx, Inc. p.542 of 563

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9511
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9513
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9516
https://tools.ietf.org/html/rfc8446#section-2.3
https://tools.ietf.org/html/rfc8470
https://tools.ietf.org/html/rfc7518#section-3.1
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16843
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16844
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16845

APPENDIX A. CHANGELOG FOR NGINX PLUS

– Added an ability to completely disable any escaping in access log (the
escape=none parameter of the log format directive).

– It is no longer required to run nginx under superuser when using the
proxy bind directive with transparent parameter on Linux, as worker
processes now inherit the CAP_NET_RAW capability from the master process.

– Added the auth jwt leeway directive used to configure a leeway to account for
clock skew when verifying exp and nbf claims, as per RFC 7519.

– Stream SSL pre-read module now can extract list of protocols advertised by
the client through ALPN (the $ssl preread alpn protocols variable).

– New variable, $upstream queue time, contains time the request spent in the
upstream queue.

• NGINX Plus R15 P2 Bug-fix Update released Oct 30, 2018

– Security patch: When using HTTP/2 a client might cause excessive memory
consumption (CVE-2018-16843) and CPU usage (CVE-2018-16844)

– Security patch: Processing of a specially crafted mp4 file with the
ngx http mp4 module might result in worker process memory disclosure
(CVE-2018-16845)

• NGINX Plus R15 P1 Bug-fix Update released April 12, 2018

– Third-party modules might not be loaded due to signature incompatibility

• NGINX Plus R14 (1.13.7), released Dec 12, 2017

– Added refactored status dashboard v2 (dashboard.html in packages) that
uses recently introduced API subsystem instead of older status and
upstream conf interfaces. Previous dashboard v1 is still available
(status.html in packages). Please note that older status and
upstream conf interfaces, as well as dashboard v1, are going to be removed in
NGINX Plus R16.

– Dynamic key-value pairs support added to the stream proxy. API version has
changed to 2 (see the ”Compatibility” section for details).

– The auth jwt header set and auth jwt claim set directives can now handle
multiple values, providing complex JWT claims support.

– Additional cryptographic algorithms were introduced in the JSON Web Token
authorization module.

– Upstream servers configured with the resolve parameter are now being
pre-resolved on configuration reload.

– The drain parameter of the server directive can now be specified in
configuration.

– New variable: $ssl client escaped cert.

– Swagger UI was adjusted to support custom ports in URLs.

• NGINX Plus R14 P1 Bug-fix Update released Jan 25, 2018

– Live activity monitoring: Reinstated some missing tooltips for the dashboard

– NGINX Plus API: HTTP Basic Authentication support for read-write mode

• NGINX Plus R13 (1.13.4), released Aug 29, 2017

– Introduced new API for accessing various status information, configuring
upstream server groups on-the-fly, and managing key-value pairs. Swagger
specification and UI is bundled in the nginx-plus packages for easy try-out.

Nginx, Inc. p.543 of 563

https://tools.ietf.org/html/rfc7519#section-4.1.4
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16843
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16844
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16845
https://tools.ietf.org/html/rfc7518#section-3.1

APPENDIX A. CHANGELOG FOR NGINX PLUS

– Introduced new module that creates variables based on key-value pairs,
dynamically managed by the new API.

– Introduced new module for mirroring requests by creating background mirror
subrequests and ignoring their responses.

– Added support for HTTP trailers.

– New worker shutdown timeout directive allows configuring a timeout for
graceful shutdown of worker processes.

– Sticky cookie with expires parameter now also includes the max-age
attribute defined in RFC 6265.

– Sticky learn session affinity mechanism extended with the header parameter
used to indicate that a session should be created immediately after receiving
response headers from upstream server.

– The proxy next upstream directive extended with the new http_429
parameter (”Too Many Requests”).

– Added the ability to specify network buffer sizes in stream and mail modules.

– SSL renegotiation is now allowed on backend connections.

– Added initial support for TLS 1.3.

• NGINX Plus R12 (1.11.10), released Mar 14, 2017

– Status module dataset updated with nginx build name (nginx_build),
shared zones usage statistics (the slabs/ subtree), and additional upstream
fields (name, service).

– Status dashboard now shows NGINX Plus version, response time metrics,
shared zones memory usage, and server names in upstreams.

– Added support for the stale-while-revalidate and stale-if-error
Cache-Control extensions, as defined by RFC 5861.

– Introduced flexible control of caching byte-range responses (the
proxy cache max range offset directive).

– Cache header Vary and ETag lenghts increased to 128 bytes. Note that the
on-disk cache format has changed, so cached content will be invalidated after
the upgrade.

– Introduced the mandatory parameter in the health check directive, requiring
all new servers to pass the associated health check before accepting real traffic.

– UDP health checks now may be configured without specifying match block.

– Stream module now supports client SSL certificates verification.

– Added a number of SSL variables representing various details about client
certificates and capabilities ($ssl client v end, $ssl client v start,
$ssl client v remain, $ssl curves, $ssl ciphers). The $ssl client verify variable
was extended to include a reason of failure.

– The $ssl client i dn and $ssl client s dn variables are now compliant with
RFC 2253; legacy variants are available as $ssl client i dn legacy and
$ssl client s dn legacy, accordingly.

– Support for acccessing arbitrary JWT fields as variables.

– Added support for JSON escaping in access logs (the escape parameter of
the log format directive).

– WebP support added to the image filter module.

– Duplicate configuration parts excluded from nginx -T output.

– Various improvements in memory usage and performance, including upstream
queue optimization.

• NGINX Plus R12 P3 Update released June 29, 2017

– Content caching: Cache response might contain additional internal cache
header data

Nginx, Inc. p.544 of 563

https://tools.ietf.org/html/rfc6265#section-4.1.2.2
https://tools.ietf.org/html/rfc5861
https://tools.ietf.org/html/rfc2253

APPENDIX A. CHANGELOG FOR NGINX PLUS

• NGINX Plus R12 P2 Update released March 30, 2017

– Live activity monitoring: Response time metric was miscalculated under
certain conditions

• NGINX Plus R12 P1 Update released March 14, 2017

– Live activity monitoring: Dashboard might hang with certain configurations

• NGINX Plus R11 (1.11.5), released Oct 25, 2016

– Introduced dynamic modules binary compatibility between NGINX Plus and
corresponding version of nginx/OSS.

– Stream module enhancements (custom logging with a number of additional
variables, PROXY protocol support for incoming connections, support for
obtaining real IP address and port from PROXY protocol header, ability to
extract server name from SNI to a variable for various purposes, e.g. custom
routing).

– Status module dataset updated with additional stream metrics (sessions,
discarded).

– Cache manager improved to support iterative operations mode when deleting
old cache files, reducing the disk load (see the manager_files,
manager_threshold, and manager_sleep parameters of the
proxy cache path directive).

– Added support for using variables in the domain parameter of the sticky
directive.

– New variable: $upstream bytes received.

• NGINX Plus R10 (1.11.3), released Aug 23, 2016

– New dynamic module: ModSecurity (package name is
nginx-plus-module-modsecurity). This is the early release candidate
of ModSecurity 3.0.

– New dynamic module: nginScript (package name is
nginx-plus-module-njs).

– Support for client authorization using the JSON Web Token (JWT).

– Stream module enhancements (embedded variables, resolver support, map
module, geo and geoip modules, A/B testing support).

– Support for multiple SSL certificate types per SSL server or SNI name (e.g.,
RSA and ECDSA).

– Transparent proxy mode support (the transparent parameter of the
proxy bind directive).

– Support for the IP_BIND_ADDRESS_NO_PORT socket option where available,
allowing for many more upstream connections.

– HTTP/2 improvements: unbuffered upload support, general bugfixes.

– New variables: $request id, $proxy protocol port, $realip remote port.

– Lua module updated to version 0.10.6 (nginx-plus-extras,
nginx-plus-module-lua).

– Passenger module updated to version 5.0.30 (nginx-plus-extras,
nginx-plus-module-passenger).

– headers-more module updated to version 0.31 (nginx-plus-extras,
nginx-plus-module-headers-more).

Nginx, Inc. p.545 of 563

https://www.nginx.com/modsec-R10/
https://www.nginx.com/nginScript-R10/

APPENDIX A. CHANGELOG FOR NGINX PLUS

– set-misc module updated to version 0.31 (nginx-plus-extras,
nginx-plus-module-headers-more).

NGINX Plus R10 will be the last release to provide the NGINX Plus Extras
package. Users should migrate to the NGINX Plus package and use the equivalent
dynamic modules.

• NGINX Plus R9 (1.9.13), released Apr 12, 2016

– Introduced a number of standalone packages with dynamic modules for
NGINX Plus (both official and third-party). Packages with official modules:

∗ nginx-plus-module-geoip (doc)

∗ nginx-plus-module-image-filter (doc)

∗ nginx-plus-module-perl (doc)

∗ nginx-plus-module-xslt (doc)

Packages with third-party modules:

∗ nginx-plus-module-headers-more (site)

∗ nginx-plus-module-lua (site)

∗ nginx-plus-module-passenger (site)

∗ nginx-plus-module-rtmp (site)

∗ nginx-plus-module-set-misc (site)

– UDP proxy support added to the stream module.

– Added support for retrieving upstream servers configuration via DNS SRV
records (the service parameter of the server directive).

– Resolver: added support for TCP fallback on retrieving large DNS responses.

– Change: requests with non-idempotent method (POST, LOCK, PATCH) are not
passed to the next server in upstream group if a request has already been sent
to an upstream server. Enabling the non_idempotent option in the
proxy next upstream directive explicitly allows retrying such requests.

– Cache: improved meta-data accounting.

– Automatic binding of worker processes to available CPUs (the auto
parameter of the worker cpu affinity directive).

– Some write operations can now be offloaded to thread pools.

– Added support for customizing the Server response header field, as well as
the signature in standard error messages.

– Lua module updated to version 0.10.2 (nginx-plus-extras,
nginx-plus-module-lua).

– Passenger module updated to version 5.0.26 (nginx-plus-extras,
nginx-plus-module-passenger).

– headers-more module updated to version 0.29 (nginx-plus-extras,
nginx-plus-module-headers-more).

– Updated status dashboard.

• NGINX Plus R9 P1 Bug-fix Update released May 25, 2016

– Segmentation fault might occur when writing a client request body to a
temporary file

– Specially crafted request might cause NGINX worker process to crash due to a
NULL pointer dereference (CVE-2016-4450)

• NGINX Plus R8 (1.9.9), released Dec 29, 2015

– HTTP/2 support is now included into the nginx-plus and
nginx-plus-extras packages. The nginx-plus-http2 and
nginx-plus-lua packages are deprecated.

Nginx, Inc. p.546 of 563

https://github.com/openresty/headers-more-nginx-module
https://github.com/openresty/lua-nginx-module
https://www.phusionpassenger.com
https://github.com/arut/nginx-rtmp-module
https://github.com/openresty/set-misc-nginx-module
http://tools.ietf.org/html/rfc7231#section-4.2.2
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4450

APPENDIX A. CHANGELOG FOR NGINX PLUS

– Caching improvements, including support of caching HEAD requests and
more effective caching of big responses with the slice module.

– Dynamically configured upstream groups now can be configured to keep states
between reloads.

– Support for arbitrary port in health check requests (the port parameter of
the health check directive).

– Enhancement in the real IP module: the $realip remote addr variable.

– Enhancement in syslog logging: the nohostname parameter.

– Lua module updated to version 0.9.20 (nginx-plus-extras).

– The lua-resty-redis Lua module updated to version 0.21
(nginx-plus-extras).

– Passenger module updated to version 5.0.22 (nginx-plus-extras).

– headers-more module updated to version 0.28 (nginx-plus-extras).

– Updated status dashboard.

• NGINX Plus R8 P3 Bug-fix Update released Feb 24, 2016

– HTTP/2: client body timeout directive was not handled correctly

• NGINX Plus R8 P2 Bug-fix Update released Feb 11, 2016

– Logging: Buffer over-read might occur while logging invalid request headers

– HTTP/2: Various fixes

• NGINX Plus R8 P1 Bug-fix Update released Jan 26, 2016

– Resolver: Limit CNAME resolutions to prevent remote attackers from causing
a denial of service (CVE-2016-0747)

• NGINX Plus R7 (1.9.4), released Sep 15, 2015

– Introduced separate family of nginx-plus-http2 packages with HTTP/2
support included in favor of SPDY. General nginx-plus packages still have
SPDY support. Please refer to the listen directive documentation for the
instructions on how to enable HTTP/2.

– TCP proxy enhancements (access control; connection limiting; upload and
download bandwidth control; client-side PROXY protocol support; ability to
choose local IP address for outgoing connections; the backlog parameter of
the listen directive; the tcp nodelay directive).

– More efficient connections distribution between worker processes (the
reuseport parameter of the listen directive).

– Introduced thread pools used for multi-threaded reading and sending files
without blocking worker processes.

– Enhanced support for modifying HTTP responses (multiple substitutions
support, variables support in search strings).

– A number of additional metrics in the new version (6) of the status dataset
(SSL handshakes and upstream queue overflows in particular).

– Updated status dashboard.

– Additional arguments to playlists in the HLS module (start, end and
offset).

– Support for proxying requests with NTLM authentication.

– New command-line switch to dump configuration to standard output: -T.

– Added lua-resty-redis Lua module (nginx-plus-extras).

Nginx, Inc. p.547 of 563

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0747

APPENDIX A. CHANGELOG FOR NGINX PLUS

– Lua module updated to version 0.9.16 (nginx-plus-lua,
nginx-plus-extras).

– Passenger module updated to version 5.0.15 (nginx-plus-extras).

– headers-more module updated to version 0.26 (nginx-plus-extras).

– set-misc module updated to version 0.29 (nginx-plus-extras).

• NGINX Plus R6 (1.7.11), released Apr 14, 2015

– TCP proxy enhancements (health checks, dynamic reconfiguration, SSL
support, logging, status counters).

– New least time load balancing method.

– Unbuffered upload support (proxy request buffering and friends).

– Proxy SSL authentication support for http and uwsgi.

– Proxy cache enhancements (variables support in proxy cache,
use_temp_path parameter in proxy cache path).

– Client SSL certificates support in mail proxy.

– Autoindex module enhancement (the autoindex format directive).

– New status dashboard.

– Lua module updated to version 0.9.16rc1 (nginx-plus-lua,
nginx-plus-extras).

– Passenger module updated to version 4.0.59 (nginx-plus-extras).

– set-misc module updated to version 0.28 (nginx-plus-extras).

• NGINX Plus R5 (1.7.7), released Dec 1, 2014

– New TCP proxying and load balancing mode (the stream module).

– Sticky session timeout now applies from the most recent request in the session.

– Upstream “draining” can be used to remove an upstream server without
interrupting any user sessions (the drain command of the upstream conf
dynamic configuration interface).

– Improved control over request retries in the event of failure, based on number
of tries and time. Also available for fastcgi, uwsgi, scgi and memcached
modules.

– Caching: the Vary response header is correctly handled (multiple variants of
the same resource can be cached). Note that the on-disk cache format has
changed, so cached content will be invalidated after the upgrade.

– Caching: improved support for byte-range requests.

– Ability to control upstream bandwidth with the proxy limit rate directive.

– Lua module updated to version 0.9.13 (nginx-plus-lua,
nginx-plus-extras).

– Passenger module updated to version 4.0.53 (nginx-plus-extras).

• NGINX Plus R4 (1.7.3), released Jul 22, 2014

– MP4 module now supports the end query argument which sets the end point
of playback.

– Added the ability to verify backend SSL certificates.

– Added support for SNI while working with SSL backends.

– Added conditional logging for requests (the if parameter of the access log
directive).

Nginx, Inc. p.548 of 563

APPENDIX A. CHANGELOG FOR NGINX PLUS

– New load balancing method based on user-defined keys with optional
consistency.

– Cache revalidation now uses If-None-Match header if possible.

– Passphrases for SSL private keys can now be stored in an external file.

– Introduced a new session affinity mechanism (sticky learn) based on
server-initiated sessions.

– Added the ability to retrieve a subset of the extended status data.

– Lua module updated to version 0.9.10 (nginx-plus-lua,
nginx-plus-extras).

– Passenger module updated to version 4.0.45 (nginx-plus-extras).

• NGINX Plus R3 (1.5.12), released Apr 2, 2014

– SPDY protocol updated to version 3.1. SPDY/2 is no longer supported.

– Added PROXY protocol support (the proxy_protocol parameter of the
listen directive).

– IPv6 support added to resolver.

– DNS names in upstream groups are periodically re-resolved (the resolve
parameter of the server directive).

– Introduced limiting connections to upstream servers (the max_conns
parameter) with optional support for connections queue.

• NGINX Plus R2 (1.5.7), released Dec 12, 2013

– Enhanced sticky routing support.

– Additional status metrics for virtual hosts and cache zones.

– Cache purge support (also available for FastCGI).

– Added support for cache revalidation.

– New module: ngx http auth request module (authorization based on the
result of a subrequest).

• NGINX Plus R2 Security Update (1.5.7-4) released March 21, 2014

– Fixes vulnerability in experimental SPDY implementation in NGINX Open
Source 1.5.7-3 and earlier.

• NGINX Plus R2 Functional Update (1.5.7-3) released March 05, 2014

– NGINX Plus now correctly applies the value set with the
client max body size directive when processing HTTP requests that contain
chunk-encoded body data.

• NGINX Plus R2 Functional Update (1.5.7-2) released Feb 13, 2014

– Updates to MP4 and HLS streaming functionality Fix for premature closing of
connections when using SPDY with proxy cache Updates to implementation
of SPDY/2 Added status.html file for live activity monitoring, missing from
some packages

• NGINX Plus R1 (1.5.3), released Aug 12, 2013

– Enhanced status monitoring.

– Load balancing: slow start feature.

– Added syslog support for both error log and access log.

Nginx, Inc. p.549 of 563

http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt

APPENDIX A. CHANGELOG FOR NGINX PLUS

– Support for Apple HTTP Live Streaming.

• NGINX Plus 1.5.0-2, released May 27, 2013

– Added support for active health checks.

• NGINX Plus 1.5.0, released May 7, 2013

– Security: fixed CVE-2013-2028.

• NGINX Plus 1.3.16, released Apr 19, 2013

– Added SPDY support.

• NGINX Plus 1.3.13, released Feb 22, 2013

– Added sticky sessions support.

– Added support for proxying WebSocket connections.

• NGINX Plus 1.3.11, released Jan 18, 2013

– Added base module ngx http gunzip module.

– New extra module: ngx http f4f module (Adobe HDS Dynamic Streaming).

– New extra module: ngx http session log module (aggregated session logging).

• NGINX Plus 1.3.9-2, released Dec 20, 2012

– License information updated.

– End-User License Agreement added to the package.

• NGINX Plus 1.3.9, released Nov 27, 2012

– Added dynamic upstream management feature.

– PDF documentation bundled into package.

• NGINX Plus 1.3.7, released Oct 18, 2012

– Initial release of NGINX Plus package.

Nginx, Inc. p.550 of 563

Appendix B

Legal Notices

Open source components included in the NGINX Plus (package name is nginx-plus) are:

• nginx/OSS (1.27.2), distributed under 2-clause BSD license.

https://nginx.org/

Copyright © 2002-2021 Igor Sysoev

Copyright © 2020-2024 F5, Inc. Copyright © 2012-2019 Nginx, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• Internal MD5 implementation based on Alexander Peslyak’s public domain
implementation:

This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
MD5 Message-Digest Algorithm (RFC 1321).

Homepage:
http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5

Author: Alexander Peslyak, better known as Solar Designer <solar at
openwall.com>

This software was written by Alexander Peslyak in 2001. No copyright is claimed,
and the software is hereby placed in the public domain. In case this attempt to
disclaim copyright and place the software in the public domain is deemed null and
void, then the software is Copyright © 2001 Alexander Peslyak and it is hereby
released to the general public under the following terms:

551

https://nginx.org/
http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5

APPENDIX B. LEGAL NOTICES

1. Redistribution and use in source and binary forms, with or without
modification, are permitted.

2. There’s ABSOLUTELY NO WARRANTY, express or implied.

(This is a heavily cut-down ”BSD license”.)

• MurmurHash algorithm (version 2), distributed under MIT license.

https://sites.google.com/site/murmurhash/

Copyright © Austin Appleby

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Components used in status monitoring dashboard v2 only (dashboard.html in
nginx-plus package) and distributed under MIT license:

• @babel-core, Babel compiler core (7.23.2).

https://github.com/babel/babel/tree/master/packages/babel-core

Copyright © 2014-present Sebastian McKenzie and other contributors

• @babel/plugin-proposal-object-rest-spread, produces spec-compliant code by using
Babel’s objectSpread helper (7.22.15).

https://github.com/babel/babel/tree/master/packages/babel-plugin-proposal-
object-rest-spread

• @babel/plugin-transform-runtime, makes helpers reference the module
babel-runtime to avoid duplication across your compiled output (7.22.15).

https://github.com/babel/babel/tree/master/packages/babel-plugin-transform-
runtime

• @babel/preset-env, a Babel preset for each environment (7.22.15).

https://github.com/babel/babel/tree/master/packages/babel-preset-env

• @babel/preset-react, a Babel preset for all React plugins (7.22.15).

https://github.com/babel/babel/tree/master/packages/babel-preset-react

• autoprefixer, a PostCSS plugin to parse CSS and add vendor prefixes to CSS rules
(10.4.7).

https://github.com/postcss/autoprefixer

Copyright © 2013 Andrey Sitnik <andrey@sitnik.ru>

• babel-loader, allows transpiling JavaScript files using Babel and webpack (9.1.3).

https://github.com/babel/babel-loader

Copyright © 2014-2019 Lúıs Couto <hello@luiscouto.pt>

• babel-plugin-istanbul, a babel plugin that adds istanbul instrumentation to ES6
code (6.1.1).

https://github.com/istanbuljs/babel-plugin-istanbul

Copyright © 2016, Istanbul Code Coverage

Nginx, Inc. p.552 of 563

https://sites.google.com/site/murmurhash/
https://github.com/babel/babel/tree/master/packages/babel-core
https://github.com/babel/babel/tree/master/packages/babel-plugin-proposal-object-rest-spread
https://github.com/babel/babel/tree/master/packages/babel-plugin-proposal-object-rest-spread
https://github.com/babel/babel/tree/master/packages/babel-plugin-transform-runtime
https://github.com/babel/babel/tree/master/packages/babel-plugin-transform-runtime
https://github.com/babel/babel/tree/master/packages/babel-preset-env
https://github.com/babel/babel/tree/master/packages/babel-preset-react
https://github.com/postcss/autoprefixer
https://github.com/babel/babel-loader
https://github.com/istanbuljs/babel-plugin-istanbul

APPENDIX B. LEGAL NOTICES

• core-js, a modular standard library for JavaScript (3.22.8).

https://github.com/zloirock/core-js

Copyright © 2014-2022 Denis Pushkarev

• css-loader, interprets @import and url() like import/require() and will
resolve them (6.8.1).

https://github.com/webpack-contrib/css-loader

Copyright © JS Foundation and other contributors

• cssnano, a modular minifier, built on top of the PostCSS ecosystem (5.1.11).

https://github.com/cssnano/cssnano

Copyright © Ben Briggs <beneb.info@gmail.com>

• eslint, a tool for identifying and reporting on patterns found in
ECMAScript/JavaScript code (8.49.0).

https://www.npmjs.com/package/eslint

Copyright OpenJS Foundation and other contributors, <www.openjsf.org>

• eslint-config-airbnb, exports some ESLint configurations (19.0.4).

https://www.npmjs.com/package/eslint-config-airbnb

Copyright (c) 2012 Airbnb

• eslint-plugin-import, supports linting of ES2015+ (ES6+) import/export syntax
and prevent issues with misspelling of file paths and import names (2.28.1).

https://www.npmjs.com/package/eslint-plugin-import

Copyright (c) 2015 Ben Mosher

• eslint-plugin-jsx-a11y, static AST checker for accessibility rules on JSX elements
(6.5.1).

https://www.npmjs.com/package/eslint-plugin-jsx-a11y

Copyright (c) 2016 Ethan Cohen

• eslint-plugin-react, react specific linting rules for eslint (7.33.2).

https://www.npmjs.com/package/eslint-plugin-react

Copyright (c) 2014 Yannick Croissant

• eslint-webpack-plugin, uses eslint to find and fix problems in the JavaScript code
(4.0.1).

https://www.npmjs.com/package/eslint-webpack-plugin

Copyright JS Foundation and other contributors

• history, manage session history with JavaScript (4.10.1).

https://github.com/ReactTraining/history

Copyright © React Training 2016-2020 Copyright © Remix Software 2020-2021

• html-inline-css-webpack-plugin, converts external stylesheet to embedded stylesheet,
aka document stylesheet (1.11.1).

https://github.com/Runjuu/html-inline-css-webpack-plugin

Copyright © 2018 Huang

• html-webpack-plugin, simplifies creation of HTML files to serve your webpack
bundles (5.5.0).

https://github.com/jantimon/html-webpack-plugin

Copyright © JS Foundation and other contributors

• mini-css-extract-plugin, extracts CSS into separate files (2.6.0).

https://github.com/webpack-contrib/mini-css-extract-plugin

Copyright © JS Foundation and other contributors

• postcss, a tool for transforming styles with JS plugins (8.4.31).

https://github.com/postcss/postcss

Copyright 2013 Andrey Sitnik <andrey@sitnik.ru>

Nginx, Inc. p.553 of 563

https://github.com/zloirock/core-js
https://github.com/webpack-contrib/css-loader
https://github.com/cssnano/cssnano
https://www.npmjs.com/package/eslint
https://www.npmjs.com/package/eslint-config-airbnb
https://www.npmjs.com/package/eslint-plugin-import
https://www.npmjs.com/package/eslint-plugin-jsx-a11y
https://www.npmjs.com/package/eslint-plugin-react
https://www.npmjs.com/package/eslint-webpack-plugin
https://github.com/ReactTraining/history
https://github.com/Runjuu/html-inline-css-webpack-plugin
https://github.com/jantimon/html-webpack-plugin
https://github.com/webpack-contrib/mini-css-extract-plugin
https://github.com/postcss/postcss

APPENDIX B. LEGAL NOTICES

• postcss-loader, PostCSS loader for webpack (7.3.3).

https://github.com/postcss/postcss-loader

Copyright © JS Foundation and other contributors

• postcss-url, PostCSS plugin to rebase url(), inline or copy asset (10.1.3).

https://github.com/postcss/postcss-url

Copyright © 2014 Maxime Thirouin

• preact, fast 3kb React alternative with the same ES6 API (10.7.3).

https://github.com/developit/preact

Copyright © 2015-present Jason Miller

• react-dev-utils, utilities used by Create React App (12.0.1).

https://github.com/facebook/create-react-app

Copyright © 2013-present, Facebook, Inc.

• regenerator-runtime, standalone runtime for Regenerator-compiled generator and
async functions (0.13.9).

https://github.com/facebook/regenerator

Copyright © 2014-present, Facebook, Inc.

• style-loader, injects CSS into the DOM (3.3.1).

https://github.com/webpack-contrib/style-loader

Copyright © JS Foundation and other contributors

• webpack, a bundler for javascript and friends (5.88.2).

https://github.com/webpack/webpack

Copyright © JS Foundation and other contributors

• webpack-cli, provides the interface of options webpack uses in its configuration file
(4.10.0).

https://github.com/webpack/webpack-cli

Copyright © JS Foundation and other contributors

• whatwg-fetch, a window.fetch JavaScript polyfill (2.0.4).

https://github.com/github/fetch

Copyright © 2014-2016 GitHub, Inc.

The MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Components used in status monitoring dashboard v2 only (dashboard.html in
nginx-plus package) and distributed under 3-clause BSD license and Apache 2.0 license:

Nginx, Inc. p.554 of 563

https://github.com/postcss/postcss-loader
https://github.com/postcss/postcss-url
https://github.com/developit/preact
https://github.com/facebook/create-react-app
https://github.com/facebook/regenerator
https://github.com/webpack-contrib/style-loader
https://github.com/webpack/webpack
https://github.com/webpack/webpack-cli
https://github.com/github/fetch

APPENDIX B. LEGAL NOTICES

• npm-font-open-sans, Open Sans font family - incl. usage of CSS, SCSS, LESS
(1.1.0), distributed under Apache 2.0 license.

https://github.com/dasrick/npm-font-open-sans

Copyright © Steve Matteson

Licensed under the Apache License, Version 2.0 (the ”License”); you may not use this
file except in compliance with the License. You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an ”AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Optional add-on and third-party modules provided with NGINX Plus may include
additional open-source components. The licenses for these components are included in the
installation package for each module.

Nginx, Inc. p.555 of 563

https://github.com/dasrick/npm-font-open-sans
http://www.apache.org/licenses/LICENSE-2.0

Index

absolute redirect, 21
accept mutex, 7
accept mutex delay, 7
access log, 216, 437
add after body, 61
add before body, 61
add header, 182
add trailer, 182
addition types, 62
aio, 21
aio write, 22
alias, 22
allow, 59, 416
ancient browser, 130
ancient browser value, 130
api, 64
auth basic, 118
auth basic user file, 118
auth delay, 23
auth http, 503
auth http header, 503
auth http pass client cert, 503
auth http timeout, 503
auth jwt, 121
auth jwt claim set, 121
auth jwt header set, 122
auth jwt key cache, 122
auth jwt key file, 122
auth jwt key request, 123
auth jwt leeway, 123
auth jwt require, 124
auth jwt type, 124
auth request, 125
auth request set, 126
autoindex, 127
autoindex exact size, 127
autoindex format, 127
autoindex localtime, 128

break, 274

charset, 131
charset map, 132
charset types, 133
chunked transfer encoding, 23
client body buffer size, 24
client body in file only, 24
client body in single buffer, 24
client body temp path, 24
client body timeout, 25
client header buffer size, 25
client header timeout, 25
client max body size, 25
connection pool size, 26
create full put path, 134

daemon, 7
dav access, 135
dav methods, 135
debug connection, 8
debug points, 8
default type, 26
deny, 59, 416
directio, 26
directio alignment, 26
disable symlinks, 27

empty gif, 137
enforce initial report, 527
env, 8
error log, 9
error page, 28
etag, 29
events, 10
expires, 183

f4f, 138
f4f buffer size, 138
fastcgi bind, 140

556

INDEX INDEX

fastcgi buffer size, 141
fastcgi buffering, 141
fastcgi buffers, 141
fastcgi busy buffers size, 142
fastcgi cache, 142
fastcgi cache background update, 142
fastcgi cache bypass, 142
fastcgi cache key, 143
fastcgi cache lock, 143
fastcgi cache lock age, 143
fastcgi cache lock timeout, 143
fastcgi cache max range offset, 144
fastcgi cache methods, 144
fastcgi cache min uses, 144
fastcgi cache path, 144
fastcgi cache purge, 146
fastcgi cache revalidate, 147
fastcgi cache use stale, 147
fastcgi cache valid, 148
fastcgi catch stderr, 148
fastcgi connect timeout, 149
fastcgi force ranges, 149
fastcgi hide header, 149
fastcgi ignore client abort, 149
fastcgi ignore headers, 150
fastcgi index, 150
fastcgi intercept errors, 150
fastcgi keep conn, 151
fastcgi limit rate, 151
fastcgi max temp file size, 151
fastcgi next upstream, 151
fastcgi next upstream timeout, 152
fastcgi next upstream tries, 153
fastcgi no cache, 153
fastcgi param, 153
fastcgi pass, 154
fastcgi pass header, 154
fastcgi pass request body, 154
fastcgi pass request headers, 155
fastcgi read timeout, 155
fastcgi request buffering, 155
fastcgi send lowat, 155
fastcgi send timeout, 156
fastcgi socket keepalive, 156
fastcgi split path info, 156
fastcgi store, 156

fastcgi store access, 157
fastcgi temp file write size, 158
fastcgi temp path, 158
flv, 160

geo, 161, 417
geoip city, 165, 420
geoip country, 164, 419
geoip org, 166, 421
geoip proxy, 166
geoip proxy recursive, 166
grpc bind, 168
grpc buffer size, 168
grpc connect timeout, 168
grpc hide header, 169
grpc ignore headers, 169
grpc intercept errors, 169
grpc next upstream, 169
grpc next upstream timeout, 170
grpc next upstream tries, 171
grpc pass, 171
grpc pass header, 171
grpc read timeout, 172
grpc send timeout, 172
grpc set header, 172
grpc socket keepalive, 172
grpc ssl certificate, 173
grpc ssl certificate key, 173
grpc ssl ciphers, 173
grpc ssl conf command, 173
grpc ssl crl, 174
grpc ssl name, 174
grpc ssl password file, 174
grpc ssl protocols, 174
grpc ssl server name, 174
grpc ssl session reuse, 175
grpc ssl trusted certificate, 175
grpc ssl verify, 175
grpc ssl verify depth, 175
gunzip, 176
gunzip buffers, 176
gzip, 177
gzip buffers, 178
gzip comp level, 178
gzip disable, 178
gzip http version, 178
gzip min length, 178

Nginx, Inc. p.557 of 563

INDEX INDEX

gzip proxied, 179
gzip static, 181
gzip types, 179
gzip vary, 180

hash, 346, 481
health check, 363, 486
health check timeout, 487
hls, 186
hls buffers, 186
hls forward args, 186
hls fragment, 187
hls mp4 buffer size, 187
hls mp4 max buffer size, 188
http, 29
http2, 394
http2 body preread size, 394
http2 chunk size, 394
http2 idle timeout, 394
http2 max concurrent pushes, 395
http2 max concurrent streams, 395
http2 max field size, 395
http2 max header size, 395
http2 max requests, 396
http2 push, 396
http2 push preload, 396
http2 recv buffer size, 397
http2 recv timeout, 397
http3, 399
http3 hq, 399
http3 max concurrent streams, 399
http3 stream buffer size, 399

if, 275
if modified since, 29
ignore invalid headers, 29
image filter, 190
image filter buffer, 191
image filter interlace, 191
image filter jpeg quality, 191
image filter sharpen, 191
image filter transparency, 191
image filter webp quality, 192
imap auth, 519
imap capabilities, 519
imap client buffer, 520
include, 10

index, 193
internal, 30
internal redirect, 194
ip hash, 346

js access, 424
js body filter, 198
js content, 199
js context reuse, 199, 424
js engine, 199, 424
js fetch buffer size, 200, 425
js fetch ciphers, 200, 425
js fetch max response buffer size,

200, 425
js fetch protocols, 200, 425
js fetch timeout, 200, 425
js fetch trusted certificate, 201, 426
js fetch verify, 201, 426
js fetch verify depth, 201, 426
js filter, 426
js header filter, 201
js import, 201, 427
js include, 202, 427
js path, 202, 427
js periodic, 203, 428
js preload object, 203, 428
js preread, 429
js set, 204, 429
js shared dict zone, 204, 430
js var, 205, 431

keepalive, 347
keepalive disable, 30
keepalive requests, 31, 348
keepalive time, 31, 349
keepalive timeout, 31, 349
keyval, 206, 432
keyval zone, 207, 433

large client header buffers, 32
least conn, 350, 482
least time, 350, 482
license token, 527
limit conn, 208, 434
limit conn dry run, 209, 435
limit conn log level, 209, 435
limit conn status, 210

Nginx, Inc. p.558 of 563

INDEX INDEX

limit conn zone, 210, 435
limit except, 32
limit rate, 32
limit rate after, 33
limit req, 212
limit req dry run, 213
limit req log level, 213
limit req status, 214
limit req zone, 214
limit zone, 210
lingering close, 33
lingering time, 34
lingering timeout, 34
listen, 35, 406, 498
load module, 10
location, 38
lock file, 10
log format, 218, 438
log not found, 39
log subrequest, 40

mail, 500
map, 220, 440
map hash bucket size, 222, 441
map hash max size, 222, 442
master process, 11
match, 364, 487
max errors, 500
max ranges, 40
memcached bind, 223
memcached buffer size, 224
memcached connect timeout, 224
memcached gzip flag, 224
memcached next upstream, 225
memcached next upstream timeout,

225
memcached next upstream tries, 225
memcached pass, 226
memcached read timeout, 226
memcached send timeout, 226
memcached socket keepalive, 226
merge slashes, 40
mgmt, 527
min delete depth, 135
mirror, 228
mirror request body, 228
modern browser, 130

modern browser value, 130
mp4, 231
mp4 buffer size, 231
mp4 limit rate, 232
mp4 limit rate after, 232
mp4 max buffer size, 232
mp4 start key frame, 232
mqtt, 443
mqtt buffers, 443
mqtt preread, 445
mqtt rewrite buffer size, 444
mqtt set connect, 444
msie padding, 41
msie refresh, 41
multi accept, 11

ntlm, 349

open file cache, 41
open file cache errors, 42
open file cache min uses, 42
open file cache valid, 42
open log file cache, 219, 439
otel exporter, 531
otel service name, 531
otel span attr, 532
otel span name, 532
otel trace, 531
otel trace context, 532
output buffers, 42
override charset, 133

pass, 446
pcre jit, 11
perl, 234
perl modules, 235
perl require, 235
perl set, 235
pid, 11
pop3 auth, 521
pop3 capabilities, 521
port in redirect, 42
postpone output, 43
preread buffer size, 409
preread timeout, 409
protocol, 500
proxy bind, 241, 449

Nginx, Inc. p.559 of 563

INDEX INDEX

proxy buffer, 507
proxy buffer size, 241, 449
proxy buffering, 241
proxy buffers, 242
proxy busy buffers size, 242
proxy cache, 242
proxy cache background update, 242
proxy cache bypass, 243
proxy cache convert head, 243
proxy cache key, 243
proxy cache lock, 243
proxy cache lock age, 244
proxy cache lock timeout, 244
proxy cache max range offset, 244
proxy cache methods, 244
proxy cache min uses, 245
proxy cache path, 245
proxy cache purge, 247
proxy cache revalidate, 247
proxy cache use stale, 248
proxy cache valid, 248
proxy connect timeout, 249, 450
proxy cookie domain, 249
proxy cookie flags, 250
proxy cookie path, 251
proxy download rate, 450
proxy force ranges, 251
proxy half close, 450
proxy headers hash bucket size, 252
proxy headers hash max size, 252
proxy hide header, 252
proxy http version, 252
proxy ignore client abort, 252
proxy ignore headers, 253
proxy intercept errors, 253
proxy limit rate, 253
proxy max temp file size, 254
proxy method, 254
proxy next upstream, 254, 450
proxy next upstream timeout, 255,

451
proxy next upstream tries, 255, 451
proxy no cache, 256
proxy pass, 256, 451
proxy pass error message, 507
proxy pass header, 257

proxy pass request body, 258
proxy pass request headers, 258
proxy pass trailers, 258
proxy protocol, 451, 507
proxy protocol timeout, 409
proxy read timeout, 259
proxy redirect, 259
proxy request buffering, 260
proxy requests, 452
proxy responses, 452
proxy send lowat, 261
proxy send timeout, 261
proxy session drop, 452
proxy set body, 261
proxy set header, 261
proxy smtp auth, 508
proxy socket keepalive, 262, 453
proxy ssl, 453
proxy ssl certificate, 262, 453
proxy ssl certificate key, 262, 453
proxy ssl ciphers, 263, 453
proxy ssl conf command, 263, 454
proxy ssl crl, 263, 454
proxy ssl name, 264, 454
proxy ssl password file, 264, 454
proxy ssl protocols, 264, 455
proxy ssl server name, 264, 455
proxy ssl session reuse, 264, 455
proxy ssl trusted certificate, 265, 455
proxy ssl verify, 265, 455
proxy ssl verify depth, 265, 456
proxy store, 265
proxy store access, 266
proxy temp file write size, 267
proxy temp path, 267
proxy timeout, 456, 508
proxy upload rate, 456

queue, 351
quic active connection id limit, 399
quic bpf, 400
quic gso, 400
quic host key, 400
quic retry, 400

random, 351, 482
random index, 269

Nginx, Inc. p.560 of 563

INDEX INDEX

read ahead, 43
real ip header, 270
real ip recursive, 271
recursive error pages, 43
referer hash bucket size, 272
referer hash max size, 272
request pool size, 43
reset timedout connection, 43
resolver, 44, 351, 409, 483, 500, 527
resolver timeout, 45, 352, 410, 484,

501
return, 276, 459
rewrite, 276
rewrite log, 278
root, 45

satisfy, 45
scgi bind, 281
scgi buffer size, 281
scgi buffering, 282
scgi buffers, 282
scgi busy buffers size, 282
scgi cache, 283
scgi cache background update, 283
scgi cache bypass, 283
scgi cache key, 283
scgi cache lock, 283
scgi cache lock age, 284
scgi cache lock timeout, 284
scgi cache max range offset, 284
scgi cache methods, 284
scgi cache min uses, 285
scgi cache path, 285
scgi cache purge, 287
scgi cache revalidate, 287
scgi cache use stale, 287
scgi cache valid, 288
scgi connect timeout, 289
scgi force ranges, 289
scgi hide header, 289
scgi ignore client abort, 290
scgi ignore headers, 290
scgi intercept errors, 290
scgi limit rate, 290
scgi max temp file size, 291
scgi next upstream, 291
scgi next upstream timeout, 292

scgi next upstream tries, 292
scgi no cache, 293
scgi param, 293
scgi pass, 293
scgi pass header, 294
scgi pass request body, 294
scgi pass request headers, 294
scgi read timeout, 294
scgi request buffering, 295
scgi send timeout, 295
scgi socket keepalive, 295
scgi store, 295
scgi store access, 296
scgi temp file write size, 296
scgi temp path, 297
secure link, 298
secure link md5, 299
secure link secret, 299
send lowat, 46
send timeout, 46
sendfile, 46
sendfile max chunk, 47
server, 47, 342, 410, 478, 502
server name, 47, 411, 502
server name in redirect, 49
server names hash bucket size, 49,

412
server names hash max size, 49, 412
server tokens, 50
session log, 301
session log format, 301
session log zone, 302
set, 278, 460
set real ip from, 270, 458, 509
slice, 303
smtp auth, 522
smtp capabilities, 522
smtp client buffer, 523
smtp greeting delay, 523
source charset, 133
split clients, 305, 461
ssi, 306
ssi last modified, 306
ssi min file chunk, 307
ssi silent errors, 307
ssi types, 307

Nginx, Inc. p.561 of 563

INDEX INDEX

ssi value length, 307
ssl, 313, 511
ssl alpn, 463
ssl buffer size, 313
ssl certificate, 314, 463, 511
ssl certificate key, 315, 464, 512
ssl ciphers, 315, 465, 512
ssl client certificate, 315, 465, 512
ssl conf command, 315, 465, 513
ssl crl, 316, 466, 513, 528
ssl dhparam, 316, 466, 513
ssl early data, 316
ssl ecdh curve, 317, 466, 513
ssl engine, 11
ssl handshake timeout, 466
ssl ocsp, 317, 467
ssl ocsp cache, 318, 467
ssl ocsp responder, 318, 467
ssl password file, 318, 467, 514
ssl prefer server ciphers, 319, 468, 514
ssl preread, 476
ssl protocols, 319, 468, 515
ssl reject handshake, 319, 469
ssl session cache, 320, 469, 515
ssl session ticket key, 320, 470, 516
ssl session tickets, 321, 470, 516
ssl session timeout, 321, 470, 516
ssl stapling, 321, 470
ssl stapling file, 322, 471
ssl stapling responder, 322, 471
ssl stapling verify, 322, 471
ssl trusted certificate, 322, 472, 517,

528
ssl verify, 528
ssl verify client, 323, 472, 517
ssl verify depth, 323, 472, 517
starttls, 517
state, 345, 481
state path, 528
status, 328
status format, 328
status zone, 65, 329
sticky, 352
sticky cookie insert, 355
stream, 412
stub status, 337

sub filter, 339
sub filter last modified, 339
sub filter once, 340
sub filter types, 340
subrequest output buffer size, 50

tcp nodelay, 50, 413
tcp nopush, 50
thread pool, 12
timeout, 502
timer resolution, 12
try files, 51
types, 53
types hash bucket size, 53
types hash max size, 53

underscores in headers, 54
uninitialized variable warn, 278
upstream, 342, 478
upstream conf, 358
usage report, 529
use, 12
user, 13
userid, 367
userid domain, 368
userid expires, 368
userid flags, 368
userid mark, 368
userid name, 369
userid p3p, 369
userid path, 369
userid service, 369
uwsgi bind, 372
uwsgi buffer size, 373
uwsgi buffering, 373
uwsgi buffers, 374
uwsgi busy buffers size, 374
uwsgi cache, 374
uwsgi cache background update, 374
uwsgi cache bypass, 374
uwsgi cache key, 375
uwsgi cache lock, 375
uwsgi cache lock age, 375
uwsgi cache lock timeout, 375
uwsgi cache max range offset, 376
uwsgi cache methods, 376
uwsgi cache min uses, 376

Nginx, Inc. p.562 of 563

INDEX INDEX

uwsgi cache path, 376
uwsgi cache purge, 378
uwsgi cache revalidate, 379
uwsgi cache use stale, 379
uwsgi cache valid, 380
uwsgi connect timeout, 380
uwsgi force ranges, 381
uwsgi hide header, 381
uwsgi ignore client abort, 381
uwsgi ignore headers, 381
uwsgi intercept errors, 382
uwsgi limit rate, 382
uwsgi max temp file size, 382
uwsgi modifier1, 383
uwsgi modifier2, 383
uwsgi next upstream, 383
uwsgi next upstream timeout, 384
uwsgi next upstream tries, 384
uwsgi no cache, 384
uwsgi param, 385
uwsgi pass, 385
uwsgi pass header, 386
uwsgi pass request body, 386
uwsgi pass request headers, 386
uwsgi read timeout, 386
uwsgi request buffering, 386
uwsgi send timeout, 387
uwsgi socket keepalive, 387
uwsgi ssl certificate, 387
uwsgi ssl certificate key, 387
uwsgi ssl ciphers, 388
uwsgi ssl conf command, 388
uwsgi ssl crl, 388
uwsgi ssl name, 388
uwsgi ssl password file, 389
uwsgi ssl protocols, 389
uwsgi ssl server name, 389
uwsgi ssl session reuse, 389
uwsgi ssl trusted certificate, 390
uwsgi ssl verify, 390
uwsgi ssl verify depth, 390
uwsgi store, 390
uwsgi store access, 391
uwsgi temp file write size, 391
uwsgi temp path, 391

valid referers, 273

variables hash bucket size, 54, 413
variables hash max size, 54, 413

worker aio requests, 13
worker connections, 13
worker cpu affinity, 13
worker priority, 14
worker processes, 14
worker rlimit core, 15
worker rlimit nofile, 15
worker shutdown timeout, 15
working directory, 15

xclient, 508
xml entities, 402
xslt last modified, 403
xslt param, 403
xslt string param, 403
xslt stylesheet, 403
xslt types, 404

zone, 345, 480
zone sync, 491
zone sync buffers, 491
zone sync connect retry interval, 491
zone sync connect timeout, 491
zone sync interval, 491
zone sync recv buffer size, 492
zone sync server, 492
zone sync ssl, 492
zone sync ssl certificate, 493
zone sync ssl certificate key, 493
zone sync ssl ciphers, 493
zone sync ssl conf command, 493
zone sync ssl crl, 494
zone sync ssl name, 494
zone sync ssl password file, 494
zone sync ssl protocols, 494
zone sync ssl server name, 494
zone sync ssl trusted certificate, 495
zone sync ssl verify, 495
zone sync ssl verify depth, 495
zone sync timeout, 495

Nginx, Inc. p.563 of 563

	Title
	Preface
	Table of Contents
	Core modules
	Core functionality
	Example Configuration
	Directives
	accept_mutex
	accept_mutex_delay
	daemon
	debug_connection
	debug_points
	env
	error_log
	events
	include
	load_module
	lock_file
	master_process
	multi_accept
	pcre_jit
	pid
	ssl_engine
	thread_pool
	timer_resolution
	use
	user
	worker_aio_requests
	worker_connections
	worker_cpu_affinity
	worker_priority
	worker_processes
	worker_rlimit_core
	worker_rlimit_nofile
	worker_shutdown_timeout
	working_directory

	Setting up hashes
	Overview

	Connection processing methods
	Overview

	Logging to syslog
	Overview

	HTTP server modules
	Module ngx_http_core_module
	Directives
	absolute_redirect
	aio
	aio_write
	alias
	auth_delay
	chunked_transfer_encoding
	client_body_buffer_size
	client_body_in_file_only
	client_body_in_single_buffer
	client_body_temp_path
	client_body_timeout
	client_header_buffer_size
	client_header_timeout
	client_max_body_size
	connection_pool_size
	default_type
	directio
	directio_alignment
	disable_symlinks
	error_page
	etag
	http
	if_modified_since
	ignore_invalid_headers
	internal
	keepalive_disable
	keepalive_requests
	keepalive_time
	keepalive_timeout
	large_client_header_buffers
	limit_except
	limit_rate
	limit_rate_after
	lingering_close
	lingering_time
	lingering_timeout
	listen
	location
	log_not_found
	log_subrequest
	max_ranges
	merge_slashes
	msie_padding
	msie_refresh
	open_file_cache
	open_file_cache_errors
	open_file_cache_min_uses
	open_file_cache_valid
	output_buffers
	port_in_redirect
	postpone_output
	read_ahead
	recursive_error_pages
	request_pool_size
	reset_timedout_connection
	resolver
	resolver_timeout
	root
	satisfy
	send_lowat
	send_timeout
	sendfile
	sendfile_max_chunk
	server
	server_name
	server_name_in_redirect
	server_names_hash_bucket_size
	server_names_hash_max_size
	server_tokens
	subrequest_output_buffer_size
	tcp_nodelay
	tcp_nopush
	try_files
	types
	types_hash_bucket_size
	types_hash_max_size
	underscores_in_headers
	variables_hash_bucket_size
	variables_hash_max_size

	Embedded Variables

	Module ngx_http_access_module
	Summary
	Example Configuration
	Directives
	allow
	deny

	Module ngx_http_addition_module
	Summary
	Example Configuration
	Directives
	add_before_body
	add_after_body
	addition_types

	Module ngx_http_api_module
	Summary
	Example Configuration
	Directives
	api
	status_zone

	Compatibility
	Endpoints
	Response Objects

	Module ngx_http_auth_basic_module
	Summary
	Example Configuration
	Directives
	auth_basic
	auth_basic_user_file

	Module ngx_http_auth_jwt_module
	Summary
	Supported Algorithms
	Example Configuration
	Directives
	auth_jwt
	auth_jwt_claim_set
	auth_jwt_header_set
	auth_jwt_key_cache
	auth_jwt_key_file
	auth_jwt_key_request
	auth_jwt_leeway
	auth_jwt_type
	auth_jwt_require

	Embedded Variables

	Module ngx_http_auth_request_module
	Summary
	Example Configuration
	Directives
	auth_request
	auth_request_set

	Module ngx_http_autoindex_module
	Summary
	Example Configuration
	Directives
	autoindex
	autoindex_exact_size
	autoindex_format
	autoindex_localtime

	Module ngx_http_browser_module
	Summary
	Example Configuration
	Directives
	ancient_browser
	ancient_browser_value
	modern_browser
	modern_browser_value

	Module ngx_http_charset_module
	Summary
	Example Configuration
	Directives
	charset
	charset_map
	charset_types
	override_charset
	source_charset

	Module ngx_http_dav_module
	Summary
	Example Configuration
	Directives
	create_full_put_path
	dav_access
	dav_methods
	min_delete_depth

	Module ngx_http_empty_gif_module
	Summary
	Example Configuration
	Directives
	empty_gif

	Module ngx_http_f4f_module
	Summary
	Example Configuration
	Directives
	f4f
	f4f_buffer_size

	Module ngx_http_fastcgi_module
	Summary
	Example Configuration
	Directives
	fastcgi_bind
	fastcgi_buffer_size
	fastcgi_buffering
	fastcgi_buffers
	fastcgi_busy_buffers_size
	fastcgi_cache
	fastcgi_cache_background_update
	fastcgi_cache_bypass
	fastcgi_cache_key
	fastcgi_cache_lock
	fastcgi_cache_lock_age
	fastcgi_cache_lock_timeout
	fastcgi_cache_max_range_offset
	fastcgi_cache_methods
	fastcgi_cache_min_uses
	fastcgi_cache_path
	fastcgi_cache_purge
	fastcgi_cache_revalidate
	fastcgi_cache_use_stale
	fastcgi_cache_valid
	fastcgi_catch_stderr
	fastcgi_connect_timeout
	fastcgi_force_ranges
	fastcgi_hide_header
	fastcgi_ignore_client_abort
	fastcgi_ignore_headers
	fastcgi_index
	fastcgi_intercept_errors
	fastcgi_keep_conn
	fastcgi_limit_rate
	fastcgi_max_temp_file_size
	fastcgi_next_upstream
	fastcgi_next_upstream_timeout
	fastcgi_next_upstream_tries
	fastcgi_no_cache
	fastcgi_param
	fastcgi_pass
	fastcgi_pass_header
	fastcgi_pass_request_body
	fastcgi_pass_request_headers
	fastcgi_read_timeout
	fastcgi_request_buffering
	fastcgi_send_lowat
	fastcgi_send_timeout
	fastcgi_socket_keepalive
	fastcgi_split_path_info
	fastcgi_store
	fastcgi_store_access
	fastcgi_temp_file_write_size
	fastcgi_temp_path

	Parameters Passed to a FastCGI Server
	Embedded Variables

	Module ngx_http_flv_module
	Summary
	Example Configuration
	Directives
	flv

	Module ngx_http_geo_module
	Summary
	Example Configuration
	Directives
	geo

	Module ngx_http_geoip_module
	Summary
	Example Configuration
	Directives
	geoip_country
	geoip_city
	geoip_org
	geoip_proxy
	geoip_proxy_recursive

	Module ngx_http_grpc_module
	Summary
	Example Configuration
	Directives
	grpc_bind
	grpc_buffer_size
	grpc_connect_timeout
	grpc_hide_header
	grpc_ignore_headers
	grpc_intercept_errors
	grpc_next_upstream
	grpc_next_upstream_timeout
	grpc_next_upstream_tries
	grpc_pass
	grpc_pass_header
	grpc_read_timeout
	grpc_send_timeout
	grpc_set_header
	grpc_socket_keepalive
	grpc_ssl_certificate
	grpc_ssl_certificate_key
	grpc_ssl_ciphers
	grpc_ssl_conf_command
	grpc_ssl_crl
	grpc_ssl_name
	grpc_ssl_password_file
	grpc_ssl_protocols
	grpc_ssl_server_name
	grpc_ssl_session_reuse
	grpc_ssl_trusted_certificate
	grpc_ssl_verify
	grpc_ssl_verify_depth

	Module ngx_http_gunzip_module
	Summary
	Example Configuration
	Directives
	gunzip
	gunzip_buffers

	Module ngx_http_gzip_module
	Summary
	Example Configuration
	Directives
	gzip
	gzip_buffers
	gzip_comp_level
	gzip_disable
	gzip_http_version
	gzip_min_length
	gzip_proxied
	gzip_types
	gzip_vary

	Embedded Variables

	Module ngx_http_gzip_static_module
	Summary
	Example Configuration
	Directives
	gzip_static

	Module ngx_http_headers_module
	Summary
	Example Configuration
	Directives
	add_header
	add_trailer
	expires

	Module ngx_http_hls_module
	Summary
	Example Configuration
	Directives
	hls
	hls_buffers
	hls_forward_args
	hls_fragment
	hls_mp4_buffer_size
	hls_mp4_max_buffer_size

	Module ngx_http_image_filter_module
	Summary
	Example Configuration
	Directives
	image_filter
	image_filter_buffer
	image_filter_interlace
	image_filter_jpeg_quality
	image_filter_sharpen
	image_filter_transparency
	image_filter_webp_quality

	Module ngx_http_index_module
	Summary
	Example Configuration
	Directives
	index

	Module ngx_http_int ... _module
	Summary
	Example Configuration
	Directives
	internal_redirect

	Module ngx_http_js_module
	Summary
	Example Configuration
	Directives
	js_body_filter
	js_content
	js_context_reuse
	js_engine
	js_fetch_buffer_size
	js_fetch_ciphers
	js_fetch_max_response_buffer_size
	js_fetch_protocols
	js_fetch_timeout
	js_fetch_trusted_certificate
	js_fetch_verify
	js_fetch_verify_depth
	js_header_filter
	js_import
	js_include
	js_path
	js_periodic
	js_preload_object
	js_set
	js_shared_dict_zone
	js_var

	Request Argument

	Module ngx_http_keyval_module
	Summary
	Example Configuration
	Directives
	keyval
	keyval_zone

	Module ngx_http_limit_conn_module
	Summary
	Example Configuration
	Directives
	limit_conn
	limit_conn_dry_run
	limit_conn_log_level
	limit_conn_status
	limit_conn_zone
	limit_zone

	Embedded Variables

	Module ngx_http_limit_req_module
	Summary
	Example Configuration
	Directives
	limit_req
	limit_req_dry_run
	limit_req_log_level
	limit_req_status
	limit_req_zone

	Embedded Variables

	Module ngx_http_log_module
	Summary
	Example Configuration
	Directives
	access_log
	log_format
	open_log_file_cache

	Module ngx_http_map_module
	Summary
	Example Configuration
	Directives
	map
	map_hash_bucket_size
	map_hash_max_size

	Module ngx_http_memcached_module
	Summary
	Example Configuration
	Directives
	memcached_bind
	memcached_buffer_size
	memcached_connect_timeout
	memcached_gzip_flag
	memcached_next_upstream
	memcached_next_upstream_timeout
	memcached_next_upstream_tries
	memcached_pass
	memcached_read_timeout
	memcached_send_timeout
	memcached_socket_keepalive

	Embedded Variables

	Module ngx_http_mirror_module
	Summary
	Example Configuration
	Directives
	mirror
	mirror_request_body

	Module ngx_http_mp4_module
	Summary
	Example Configuration
	Directives
	mp4
	mp4_buffer_size
	mp4_max_buffer_size
	mp4_limit_rate
	mp4_limit_rate_after
	mp4_start_key_frame

	Module ngx_http_perl_module
	Summary
	Known Issues
	Example Configuration
	Directives
	perl
	perl_modules
	perl_require
	perl_set

	Calling Perl from SSI
	The $r Request Object Methods

	Module ngx_http_proxy_module
	Summary
	Example Configuration
	Directives
	proxy_bind
	proxy_buffer_size
	proxy_buffering
	proxy_buffers
	proxy_busy_buffers_size
	proxy_cache
	proxy_cache_background_update
	proxy_cache_bypass
	proxy_cache_convert_head
	proxy_cache_key
	proxy_cache_lock
	proxy_cache_lock_age
	proxy_cache_lock_timeout
	proxy_cache_max_range_offset
	proxy_cache_methods
	proxy_cache_min_uses
	proxy_cache_path
	proxy_cache_purge
	proxy_cache_revalidate
	proxy_cache_use_stale
	proxy_cache_valid
	proxy_connect_timeout
	proxy_cookie_domain
	proxy_cookie_flags
	proxy_cookie_path
	proxy_force_ranges
	proxy_headers_hash_bucket_size
	proxy_headers_hash_max_size
	proxy_hide_header
	proxy_http_version
	proxy_ignore_client_abort
	proxy_ignore_headers
	proxy_intercept_errors
	proxy_limit_rate
	proxy_max_temp_file_size
	proxy_method
	proxy_next_upstream
	proxy_next_upstream_timeout
	proxy_next_upstream_tries
	proxy_no_cache
	proxy_pass
	proxy_pass_header
	proxy_pass_request_body
	proxy_pass_request_headers
	proxy_pass_trailers
	proxy_read_timeout
	proxy_redirect
	proxy_request_buffering
	proxy_send_lowat
	proxy_send_timeout
	proxy_set_body
	proxy_set_header
	proxy_socket_keepalive
	proxy_ssl_certificate
	proxy_ssl_certificate_key
	proxy_ssl_ciphers
	proxy_ssl_conf_command
	proxy_ssl_crl
	proxy_ssl_name
	proxy_ssl_password_file
	proxy_ssl_protocols
	proxy_ssl_server_name
	proxy_ssl_session_reuse
	proxy_ssl_trusted_certificate
	proxy_ssl_verify
	proxy_ssl_verify_depth
	proxy_store
	proxy_store_access
	proxy_temp_file_write_size
	proxy_temp_path

	Embedded Variables

	Module ngx_http_pro ... _module
	Summary
	Example Configuration
	Embedded Variables

	Module ngx_http_random_index_module
	Summary
	Example Configuration
	Directives
	random_index

	Module ngx_http_realip_module
	Summary
	Example Configuration
	Directives
	set_real_ip_from
	real_ip_header
	real_ip_recursive

	Embedded Variables

	Module ngx_http_referer_module
	Summary
	Example Configuration
	Directives
	referer_hash_bucket_size
	referer_hash_max_size
	valid_referers

	Embedded Variables

	Module ngx_http_rewrite_module
	Summary
	Directives
	break
	if
	return
	rewrite
	rewrite_log
	set
	uninitialized_variable_warn

	Internal Implementation

	Module ngx_http_scgi_module
	Summary
	Example Configuration
	Directives
	scgi_bind
	scgi_buffer_size
	scgi_buffering
	scgi_buffers
	scgi_busy_buffers_size
	scgi_cache
	scgi_cache_background_update
	scgi_cache_bypass
	scgi_cache_key
	scgi_cache_lock
	scgi_cache_lock_age
	scgi_cache_lock_timeout
	scgi_cache_max_range_offset
	scgi_cache_methods
	scgi_cache_min_uses
	scgi_cache_path
	scgi_cache_purge
	scgi_cache_revalidate
	scgi_cache_use_stale
	scgi_cache_valid
	scgi_connect_timeout
	scgi_force_ranges
	scgi_hide_header
	scgi_ignore_client_abort
	scgi_ignore_headers
	scgi_intercept_errors
	scgi_limit_rate
	scgi_max_temp_file_size
	scgi_next_upstream
	scgi_next_upstream_timeout
	scgi_next_upstream_tries
	scgi_no_cache
	scgi_param
	scgi_pass
	scgi_pass_header
	scgi_pass_request_body
	scgi_pass_request_headers
	scgi_read_timeout
	scgi_request_buffering
	scgi_send_timeout
	scgi_socket_keepalive
	scgi_store
	scgi_store_access
	scgi_temp_file_write_size
	scgi_temp_path

	Module ngx_http_secure_link_module
	Summary
	Directives
	secure_link
	secure_link_md5
	secure_link_secret

	Embedded Variables

	Module ngx_http_session_log_module
	Summary
	Example Configuration
	Directives
	session_log
	session_log_format
	session_log_zone

	Embedded Variables

	Module ngx_http_slice_module
	Summary
	Known Issues
	Example Configuration
	Directives
	slice

	Embedded Variables

	Module ngx_http_split_clients_module
	Summary
	Example Configuration
	Directives
	split_clients

	Module ngx_http_ssi_module
	Summary
	Example Configuration
	Directives
	ssi
	ssi_last_modified
	ssi_min_file_chunk
	ssi_silent_errors
	ssi_types
	ssi_value_length

	SSI Commands
	Embedded Variables

	Module ngx_http_ssl_module
	Summary
	Example Configuration
	Directives
	ssl
	ssl_buffer_size
	ssl_certificate
	ssl_certificate_key
	ssl_ciphers
	ssl_client_certificate
	ssl_conf_command
	ssl_crl
	ssl_dhparam
	ssl_early_data
	ssl_ecdh_curve
	ssl_ocsp
	ssl_ocsp_cache
	ssl_ocsp_responder
	ssl_password_file
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_reject_handshake
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_tickets
	ssl_session_timeout
	ssl_stapling
	ssl_stapling_file
	ssl_stapling_responder
	ssl_stapling_verify
	ssl_trusted_certificate
	ssl_verify_client
	ssl_verify_depth

	Error Processing
	Embedded Variables

	Module ngx_http_status_module
	Summary
	Example Configuration
	Directives
	status
	status_format
	status_zone

	Data
	Compatibility

	Module ngx_http_stub_status_module
	Summary
	Example Configuration
	Directives
	stub_status

	Data
	Embedded Variables

	Module ngx_http_sub_module
	Summary
	Example Configuration
	Directives
	sub_filter
	sub_filter_last_modified
	sub_filter_once
	sub_filter_types

	Module ngx_http_upstream_module
	Summary
	Example Configuration
	Directives
	upstream
	server
	zone
	state
	hash
	ip_hash
	keepalive
	keepalive_requests
	keepalive_time
	keepalive_timeout
	ntlm
	least_conn
	least_time
	queue
	random
	resolver
	resolver_timeout
	sticky
	sticky_cookie_insert

	Embedded Variables

	Module ngx_http_upstream_conf_module
	Summary
	Example Configuration
	Directives
	upstream_conf

	Module ngx_http_upstream_hc_module
	Summary
	Example Configuration
	Directives
	health_check
	match

	Module ngx_http_userid_module
	Summary
	Example Configuration
	Directives
	userid
	userid_domain
	userid_expires
	userid_flags
	userid_mark
	userid_name
	userid_p3p
	userid_path
	userid_service

	Embedded Variables

	Module ngx_http_uwsgi_module
	Summary
	Example Configuration
	Directives
	uwsgi_bind
	uwsgi_buffer_size
	uwsgi_buffering
	uwsgi_buffers
	uwsgi_busy_buffers_size
	uwsgi_cache
	uwsgi_cache_background_update
	uwsgi_cache_bypass
	uwsgi_cache_key
	uwsgi_cache_lock
	uwsgi_cache_lock_age
	uwsgi_cache_lock_timeout
	uwsgi_cache_max_range_offset
	uwsgi_cache_methods
	uwsgi_cache_min_uses
	uwsgi_cache_path
	uwsgi_cache_purge
	uwsgi_cache_revalidate
	uwsgi_cache_use_stale
	uwsgi_cache_valid
	uwsgi_connect_timeout
	uwsgi_force_ranges
	uwsgi_hide_header
	uwsgi_ignore_client_abort
	uwsgi_ignore_headers
	uwsgi_intercept_errors
	uwsgi_limit_rate
	uwsgi_max_temp_file_size
	uwsgi_modifier1
	uwsgi_modifier2
	uwsgi_next_upstream
	uwsgi_next_upstream_timeout
	uwsgi_next_upstream_tries
	uwsgi_no_cache
	uwsgi_param
	uwsgi_pass
	uwsgi_pass_header
	uwsgi_pass_request_body
	uwsgi_pass_request_headers
	uwsgi_read_timeout
	uwsgi_request_buffering
	uwsgi_send_timeout
	uwsgi_socket_keepalive
	uwsgi_ssl_certificate
	uwsgi_ssl_certificate_key
	uwsgi_ssl_ciphers
	uwsgi_ssl_conf_command
	uwsgi_ssl_crl
	uwsgi_ssl_name
	uwsgi_ssl_password_file
	uwsgi_ssl_protocols
	uwsgi_ssl_server_name
	uwsgi_ssl_session_reuse
	uwsgi_ssl_trusted_certificate
	uwsgi_ssl_verify
	uwsgi_ssl_verify_depth
	uwsgi_store
	uwsgi_store_access
	uwsgi_temp_file_write_size
	uwsgi_temp_path

	Module ngx_http_v2_module
	Summary
	Known Issues
	Example Configuration
	Directives
	http2
	http2_body_preread_size
	http2_chunk_size
	http2_idle_timeout
	http2_max_concurrent_pushes
	http2_max_concurrent_streams
	http2_max_field_size
	http2_max_header_size
	http2_max_requests
	http2_push
	http2_push_preload
	http2_recv_buffer_size
	http2_recv_timeout

	Embedded Variables

	Module ngx_http_v3_module
	Summary
	Known Issues
	Example Configuration
	Directives
	http3
	http3_hq
	http3_max_concurrent_streams
	http3_stream_buffer_size
	quic_active_connection_id_limit
	quic_bpf
	quic_gso
	quic_host_key
	quic_retry

	Embedded Variables

	Module ngx_http_xslt_module
	Summary
	Example Configuration
	Directives
	xml_entities
	xslt_last_modified
	xslt_param
	xslt_string_param
	xslt_stylesheet
	xslt_types

	Stream server modules
	Module ngx_stream_core_module
	Summary
	Example Configuration
	Directives
	listen
	preread_buffer_size
	preread_timeout
	proxy_protocol_timeout
	resolver
	resolver_timeout
	server
	server_name
	server_names_hash_bucket_size
	server_names_hash_max_size
	stream
	tcp_nodelay
	variables_hash_bucket_size
	variables_hash_max_size

	Embedded Variables

	Module ngx_stream_access_module
	Summary
	Example Configuration
	Directives
	allow
	deny

	Module ngx_stream_geo_module
	Summary
	Example Configuration
	Directives
	geo

	Module ngx_stream_geoip_module
	Summary
	Example Configuration
	Directives
	geoip_country
	geoip_city
	geoip_org

	Module ngx_stream_js_module
	Summary
	Example Configuration
	Directives
	js_access
	js_context_reuse
	js_engine
	js_fetch_buffer_size
	js_fetch_ciphers
	js_fetch_max_response_buffer_size
	js_fetch_protocols
	js_fetch_timeout
	js_fetch_trusted_certificate
	js_fetch_verify
	js_fetch_verify_depth
	js_filter
	js_import
	js_include
	js_path
	js_periodic
	js_preload_object
	js_preread
	js_set
	js_shared_dict_zone
	js_var

	Session Object Properties

	Module ngx_stream_keyval_module
	Summary
	Example Configuration
	Directives
	keyval
	keyval_zone

	Module ngx_stream_limit_conn_module
	Summary
	Example Configuration
	Directives
	limit_conn
	limit_conn_dry_run
	limit_conn_log_level
	limit_conn_zone

	Embedded Variables

	Module ngx_stream_log_module
	Summary
	Example Configuration
	Directives
	access_log
	log_format
	open_log_file_cache

	Module ngx_stream_map_module
	Summary
	Example Configuration
	Directives
	map
	map_hash_bucket_size
	map_hash_max_size

	Module ngx_stream_mqtt_filter_module
	Summary
	Example Configuration
	Directives
	mqtt
	mqtt_buffers
	mqtt_rewrite_buffer_size
	mqtt_set_connect

	Module ngx_stream_mqtt_preread_module
	Summary
	Example Configuration
	Directives
	mqtt_preread

	Embedded Variables

	Module ngx_stream_pass_module
	Summary
	Example Configuration
	Directives
	pass

	Module ngx_stream_proxy_module
	Summary
	Example Configuration
	Directives
	proxy_bind
	proxy_buffer_size
	proxy_connect_timeout
	proxy_download_rate
	proxy_half_close
	proxy_next_upstream
	proxy_next_upstream_timeout
	proxy_next_upstream_tries
	proxy_pass
	proxy_protocol
	proxy_requests
	proxy_responses
	proxy_session_drop
	proxy_socket_keepalive
	proxy_ssl
	proxy_ssl_certificate
	proxy_ssl_certificate_key
	proxy_ssl_ciphers
	proxy_ssl_conf_command
	proxy_ssl_crl
	proxy_ssl_name
	proxy_ssl_password_file
	proxy_ssl_protocols
	proxy_ssl_server_name
	proxy_ssl_session_reuse
	proxy_ssl_trusted_certificate
	proxy_ssl_verify
	proxy_ssl_verify_depth
	proxy_timeout
	proxy_upload_rate

	Module ngx_stream_p ... _module
	Summary
	Example Configuration
	Embedded Variables

	Module ngx_stream_realip_module
	Summary
	Example Configuration
	Directives
	set_real_ip_from

	Embedded Variables

	Module ngx_stream_return_module
	Summary
	Example Configuration
	Directives
	return

	Module ngx_stream_set_module
	Summary
	Example Configuration
	Directives
	set

	Module ngx_stream_split_clients_module
	Summary
	Example Configuration
	Directives
	split_clients

	Module ngx_stream_ssl_module
	Summary
	Example Configuration
	Directives
	ssl_alpn
	ssl_certificate
	ssl_certificate_key
	ssl_ciphers
	ssl_client_certificate
	ssl_conf_command
	ssl_crl
	ssl_dhparam
	ssl_ecdh_curve
	ssl_handshake_timeout
	ssl_ocsp
	ssl_ocsp_cache
	ssl_ocsp_responder
	ssl_password_file
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_reject_handshake
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_tickets
	ssl_session_timeout
	ssl_stapling
	ssl_stapling_file
	ssl_stapling_responder
	ssl_stapling_verify
	ssl_trusted_certificate
	ssl_verify_client
	ssl_verify_depth

	Embedded Variables

	Module ngx_stream_ssl_preread_module
	Summary
	Example Configuration
	Directives
	ssl_preread

	Embedded Variables

	Module ngx_stream_upstream_module
	Summary
	Example Configuration
	Directives
	upstream
	server
	zone
	state
	hash
	least_conn
	least_time
	random
	resolver
	resolver_timeout

	Embedded Variables

	Module ngx_stream_upstream_hc_module
	Summary
	Example Configuration
	Directives
	health_check
	health_check_timeout
	match

	Module ngx_stream_zone_sync_module
	Summary
	Example Configuration
	Directives
	zone_sync
	zone_sync_buffers
	zone_sync_connect_retry_interval
	zone_sync_connect_timeout
	zone_sync_interval
	zone_sync_recv_buffer_size
	zone_sync_server
	zone_sync_ssl
	zone_sync_ssl_certificate
	zone_sync_ssl_certificate_key
	zone_sync_ssl_ciphers
	zone_sync_ssl_conf_command
	zone_sync_ssl_crl
	zone_sync_ssl_name
	zone_sync_ssl_password_file
	zone_sync_ssl_protocols
	zone_sync_ssl_server_name
	zone_sync_ssl_trusted_certificate
	zone_sync_ssl_verify
	zone_sync_ssl_verify_depth
	zone_sync_timeout

	API endpoints
	Starting, stopping, removing a cluster node

	Mail server modules
	Module ngx_mail_core_module
	Summary
	Example Configuration
	Directives
	listen
	mail
	max_errors
	protocol
	resolver
	resolver_timeout
	server
	server_name
	timeout

	Module ngx_mail_auth_http_module
	Directives
	auth_http
	auth_http_header
	auth_http_pass_client_cert
	auth_http_timeout

	Protocol

	Module ngx_mail_proxy_module
	Directives
	proxy_buffer
	proxy_pass_error_message
	proxy_protocol
	proxy_smtp_auth
	proxy_timeout
	xclient

	Module ngx_mail_realip_module
	Summary
	Example Configuration
	Directives
	set_real_ip_from

	Module ngx_mail_ssl_module
	Summary
	Example Configuration
	Directives
	ssl
	ssl_certificate
	ssl_certificate_key
	ssl_ciphers
	ssl_client_certificate
	ssl_conf_command
	ssl_crl
	ssl_dhparam
	ssl_ecdh_curve
	ssl_password_file
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_tickets
	ssl_session_timeout
	ssl_trusted_certificate
	ssl_verify_client
	ssl_verify_depth
	starttls

	Module ngx_mail_imap_module
	Directives
	imap_auth
	imap_capabilities
	imap_client_buffer

	Module ngx_mail_pop3_module
	Directives
	pop3_auth
	pop3_capabilities

	Module ngx_mail_smtp_module
	Directives
	smtp_auth
	smtp_capabilities
	smtp_client_buffer
	smtp_greeting_delay

	Miscellaneous
	Command-line parameters
	Overview

	Module ngx_mgmt_module
	Summary
	Example Configuration
	Directives
	mgmt
	enforce_initial_report
	license_token
	resolver
	ssl_crl
	ssl_trusted_certificate
	ssl_verify
	state_path
	usage_report

	Module ngx_otel_module
	Summary
	Example Configuration
	Directives
	otel_exporter
	otel_service_name
	otel_trace
	otel_trace_context
	otel_span_name
	otel_span_attr

	Default span attributes
	Embedded Variables

	Changelog for NGINX Plus
	Legal Notices
	Index

